NATIONAL ANTARCTIC EXPEDITION 1901-1904

NATURAL HISTORY

Vol. IV.
ZOOLOGY
(VARIOUS INVERTEBRATA)

LON1)ON
PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM

1908
(All Rights Rescrict)

CRUSTACEA.
 VIII.--COPEPODA.*

By R. Norris Wolifenden, M.D. (Cantab.), F.L.S., F.Z.S.

(7 Plates.)

PREFATORY NOTE.

Tre collection handed to me for examination and report thereon was contained in 163 bottles, the contents of a few of which were in such bad preservation that they were practically worthless for the purpose of identification. The collection of individual species is not a large one, though there were great quantities of the more common species. But few absolutely new forms were found ; these comprised a new genus (Paralabidocerre) and seven new species (Euchoeta similis, Stephus antarcticum, Xenthocalunus antarcticus and X. magmus, Ileloptilus ncellatus, Faroella entarcticu, and Gotetamus antarcticus). As such of these copepods as may be considered Antaretic were collected within a small area, I have not deemed it necessary to occupy space by the repetition of individual captures, which would be monotonous and of no particular interest. The drawings have been made by Miss Marion Lees,

The signs used in the following pages are $B 1$ and $B 2$ for first and second basals; $R i$ and $R e$ for endopodite and exopodite; $S i$ for inner marginal and S for outer marginal spine (or bristle); $L i$ for inner and $L e^{e}$ for outer lobe; Th for thoracic somite. As they were first used in Gieshrecht's great work, and have been subsequently often employed by others as abbreviations, the author has thought no excuse necessary for their use here, in order to avoid the constant repetition of the words "exopodite" and " endopodite," etc.

1.

Until the expedition of the 'Belgica' there existed no records of the collection of Copepoda south of Kerguelen, except those of Dr. Brady, which referred to the 'Challenger' collections made from the south of Kergnelen to the pack-ice at $66^{\circ} 29^{\prime} \mathrm{S}$.

The collectious made by the 'Diseovery,' the 'Belgica,' and the 'Gauss' form a most important contribution to the planktonology of this southern region, and the

[^0]results of any one expedition eannot properly be appreciated without reference to the others.

The 'Belgica' colleetions were made S. and S.E. of Peter I. Island, between $69^{\circ} 48^{\prime}$ and $71^{\circ} 18^{\prime} \mathrm{S}$., and $81^{\circ} 19^{\prime}$ and $92^{\circ} 22^{\prime} \mathrm{W}$., between April 21 st and Deeember 6th, 1898, by means of nets lowered through holes in the paek-ice to a depth of $0-500$ mètres.

The 'Discovery' eollections were made by lowering and raising a vertieally aetuated net through holes cut in the ice, while the ship was in Winter Quarters.*

The 'Gauss' eollections were made from the South of Kerguelen to the winter station in Gauss Bay, Kaiser Wilhelm II. Land, and were of very extensive character, and as the collections were further made throughout the Atlantic traverse of the ship, they afford an opportunity for the comparison of the purely Antaretic fauna with that of the Southern Oecan.

In eonsidering the question of the distribution of the Copepoda of the southernmost area of the Atlantic (the Antaretic region) it is convenient to consider the results of these expeditions together, since any conclusions drawn from the results of the 'Discovery' alone would be ineomplete and even misleading. The 'Belgiea' eollections have been reported upon by Dr. Giesbreeht ("Résultats du Voyage du S.Y. 'Belgiea' en 1897-1898-1899"; Rapports Scientifiques, 1902), and the 'Gauss' colleetions are still under examination, and I only now refer to the results of my examination of that eollection in so far as they assist the elucidation of the 'Discovery' results.

From the results of the three expeditions ('North Ameriean,' 'Challenger' and 'Vettor Pisani') which, previously to the 'Belgiea,' had eolleeted in the Southern Ocean as far south as the pack-ice. Giesbrecht aceepts seventeen species as correct, after rejeeting a number of species as "ungenügend beschriebenen und nieht zuverlässig genug bestimmten "), † ‘iぇ., Aetidius armatus ($50^{\circ} \mathrm{S}$.), Culanus finmarchichus $\left(52^{\circ}\right)$, Calumus patagoniensis $\left(47^{\circ}\right)$, C. propinquus $\left(64^{\circ} 37^{\prime}\right)$, simillimus $\left(52^{\circ}\right)$, Centropages brachiutus $\left(52^{\circ}\right)$, Clausicalamus arcuicornis $\left(53^{\circ}\right)$, Clytemnestra scutcllata $\left(46^{\circ}\right)$,

* Mr. Hodgson has supplied me with the following.-Ed.
". Tow-xetting in Winter Quarters.
"After the surface of the sea was frozen orer there was no means of dragging a tow-net through the water, and as the current seemed sufficiently strong to hold the net out, it was attached to a line about a fathom above a heary sinker, 28 lbs , and lowered to a depth of ten fathoms, except in special instances or during the summer. This depth was decided on, it having been found that the formation of ice crystals on the nets could be avoided. These crystals formed on the lines down to $5-8$ fathoms, according to the season. The nets remained down for twentr-four hours, sometimes longer if the holes could not be visited on account of the weather, or opened on account of some difficulty with the ice. The mouth of the net was always in an approximately vertical position, this was secmred by the attachment of the line direct to the ring of the net and the sinker to the other side of the ring."
\dagger The rejected species are, Acarlia denticomis (52 $)$, Candacia curta (50°) and truncala ($64^{\circ} 37^{\prime}$), Eucalanus atlemuatus (47 25'). Euchota marina ($47^{\circ} 25^{\prime}$), Haloptilus aculentus ($46^{\circ} 46^{\prime}$), Heterovhabrlus spinifrons (50°), Luciculia flavicomis ($47^{\circ} 25^{\prime}$), Pleuromamma abdominale ($65^{\circ} 42^{\prime}$). Copilia stylifera ($66^{\circ} 29^{\prime}$).-Giesbrecht, - Belgica ' report. p. $\overline{\text {. }}$

Monstrille grandis $\left(49^{\circ}\right)$, Oithona similis $\left(52^{\circ}\right)$, Percucelanus perves. $\left(52^{\circ}\right)$, Rhincalumus nasutus $\left(52^{\circ}\right)$, R. giga.s ($65^{\circ} 42^{\prime}$), Scolecithrix minor $\left(46^{\circ} 46^{\prime}\right)$.

This list contains a striking number of forms which are usually associated with more temperate regions, and, as Dr. Giesbrecht remarks, the failure in agreement with the pelagic species of the 'Belgica' is very striking, for only two species are common to all eollections. Comparing it with the results of the 'Discovery' the same extraordinary differences are manifest, only four species (C : propinques, C. simillimus, Clausecalumes arcuicornis, Oithoma similis) being common to both collections.

In the 'Gauss' collections, in the area between Kerguelen and the Winter Station, appear a great number of species in excess of those either of the 'Belgira' or 'Dissovery.' Whereas in the 'Belgica' collection oecmr thirty species, of which nineteen only are pelagic, in the 'Discovery' collection are twenty-four species of pelagic Copepoda; but in the 'Gamss' collection this number is more than doubled, and a nmmber of species oceur even in the collections made round ahout the Winter Station which are not entirely Antaretic, but extend a long way northwards through the deeper waters of the Atlantic Ucean, and have been brought there probably by southern eurrents. The species determined, however, show but little agreement with the list enumerated above.

The very extensive number of species captured by the 'Gauss' naturalists is probably due to the fact that the tow-nets were used at much greater depths than in the case of either the 'Belgica' or ' Diseovery.' In the former, 500 metres appears to have been the limit, whereas in the latter the eolleetions may be considered to be practically surface collections. If the tow-net had been used at the depths it was employed on the 'Gauss,' viz, to 3,000 metres, the agreement between the respective captures might certainly have been greater, and the number of species taken greatly increased.

In the 'Gauss' collections appear only six species which agree with any of the speeies referred to above (viz., Aefideus armutus, Calcmus propinquus and C. simillimus, Clus.ochlemus urcuicomin, Oithom similis, Lucicutia fluricomis), and when it is remembered that in the 'Belgica' collection there are only two species, and in the 'Discovery' ouly four species, of the twenty-seven species enumerated by (iieshrecht which are in agreement, the conclusion is inevitable either that the captures made by the expeditions mentioned were unusual, or that the identification of species has in some instances been erroncous. That unusual species do appear in these areas, even close to the ice, is shown by the oecurrence in the 'Gauss' Antarctic collections of Conycous. speciosins, Stopphirinu metallinu, Aetideus: armutus., Lubidocera acutifirens, Lindeuchutn meior', Arietellus setowus, and others; and in the 'Discovery' colleetion in Lat. 56° 31^{\prime} S., Long. $156^{\circ} 19^{\prime} 30^{\prime \prime}$ occurred Eucultmus subtemeis, and in Lat. $49^{\circ} 40^{\prime} \mathrm{S}$., and Long. $172^{\circ} 18^{\prime} 30^{\prime \prime} \mathrm{W} .$, Pleuromanmun gracilis, several young Canduce, Euchatu morimu, and Centropages virlucrus, which belong undoubtedly to a subtropieal or warm temperate area, and are to he regarded as accidental.

While the number of species captured was in each case comparatively small, the number of individuals in any one haul in the case of the 'Discovery' was very great. The rnle which appears to hold good for tow-netting in the north part of the North Atlantic, viz., that the further north we go the smaller the number of species, but the immensely increased preponderance of individuals of certain specics, certainly holds good as regards the Sonth Polar regions. Immense numbers of the small copepod Ctenocalanus vanus appear in some of the hanls, to the almost entire exclusion of any other species, and in other cases the larger copepod Euchosta antarctica appears in great preponderance. Calamus acutus and, to a lesser extent, Calamus propinquus also preponderate largely. Similarly, Metridia gerlachei appears in most of the captures.

The collections of the 'Gauss' provide information which is not given by those of the 'Discovery' or of the 'Belgica,' namely, that several species which appear in the Southern Polar Sea also occur in the decper water of the Atlantic Occan to the northwards of the Antarctic area. But as this properly belongs to the report of the 'Gauss' collections which I have in hand, I forbear its discussion in this place.

Two questions are suggested by Dr. Giesbrecht in his 'Belgica' report, viz., (1) Does the Antarctic area possess a pecnliar fauna? (2) Is the small agreement of the Antarctic copepod fauna with that of the nearest seas due to defective research, or is it that the area of the pack-ice has its own peculiar fanna? and the further questions as to whether the admixtnre of Polar and Antarctic fauna occurs in the dcep ocean, or whether there are physical and biogenetic conditions in the Polar regions which differ from those in the warm seas and prevent snch exchange of species, receive some elucidation from the collections of the 'Gauss.'

With regard to the first question, viz., Docs the Antarctic area possess its own peculiar fauna? it mnst be remarked that from the results of the threc collections named the typical copepod fauna (pelagic) of this region consists in the following :-

Calames acutus ", simillimus ". propinquas
Rhincalanus grandis
Euchota antarctica
," austrina
" similis
Ctenocalanus vanus
Heterorrhabdus austrinus
Euchirella magna
Spinocalanus antarcticus
Metridia gerlachei

Oncea curvata, similis, frigida, notopus, comifera
Scolecithrix glacialis
Oithona similis
". frigida
Gaetamus antarcticus
Haloptilus ocellatus
Paralabidocera hodgsoni
Stephus longipes -
., antarcticum
Ectinosoma antarcticum
Microcalamus pusillus

1. Of the Antarctic Copepoda the following are new species and genera :-

Paralabidocera hodgsoni	Euchirellu mugna
Haloptilus ocellatus	Faroella anturctica
Stephos antarcticus	Guetunus antarcticus
Euchota similis	Tanthocalunus antarcticus

2. The following are species newly described hy Dr. Giesbrecht (' Belgica' report), occurring also in the 'Discovery' collection :--
Euchoeta antarctica
Stephus longipes
Metridia gerlachei (nearly related to M. boecki and M. lucens).
Oncea currata
Rhincalums grandis "
ITarpacticus furcifer "
3. Of species which occur in the North Polar regions there are only the following 'Discovery' species, which bear such slight modification as to be practically identical : Microcelemus pusillus ($=$ Pseudocalanus pygmæus); Oithome similis.
4. The 'Discovery' collection would therefore lead us to suppose that, so far as copepod fauna is concerned, there is little resemblance between the characteristic fauna of both Polar regions. In the 'Belgica' collection, Oncea conifera and nutopus; and in the 'Gauss' collection, Oncea conifera, Gaidius temuispinus and brevispimus, and Amullophore magnu, that is, seven species of a total of $55-60$ species occurring in the South Polar seas, are all that are identical with the species described by Prof. Sars as collected by Nansen's Norwegian North Polar Expedition. It would not, however, be safe to take this list of Prof. Sars' as the ultimate result of copepod research of the North Polar seas, and other species may yet be found to be identical.

The following table shows the comparative relationship of species of the more frequently occurring genera :-

In the North Polar Sea, as Prof. Sars remarks, besides the few distinctly Arctic species are many which extend southwards to the warmer seas, and the North Polar basin copepod fauna has a pronounced resemblance to that of the North Atlantic basin, the greater number of species being common to both, and some deep-water forms of the Norwegian Sea are often surface forms in the North Polar basin. A few forms regarded as quite southern also occur in the North Polar Sea.

So far as the distribution can be followed from the 'Gauss' collections, it may be said that, of the typical Antarctic fauna its representatives diminish gradually to latitude 40° S. (i.e. about the latitude of St. Paul and New Amsterdam) north of which they do not appear, but extend westwards to those stations situated directly south and westward to 10° E. as a limit of the Cape of Good Hope, north of which no typically Antarctic species appears.

North of Kerguelen, i.e. 50° S. lat., no Antarctic species appear to extend, while the typically subtropical species of the Indian Ocean extend as far south as latitude $30^{\circ} \mathrm{S}$., where their southern extension appears to be arrested. There is thus a barrier between lat. 40° and $50^{\circ} \mathrm{S}$. and between long. 10° and $80^{\circ} \mathrm{E}$. as indicated by the 'Gauss' collections, at which extension northwards of Antarctic species and southwards of Indian Occan subtropical species is prevented, or at any rate, does not occur. While the same collections indicate that the Antarctic species extend northwards into the Atlantic Ocean in gradually diminishing numbers, only as far as lat. $40^{\circ} \mathrm{S}$., north of which they do not occur, a few typically Atlantic deep-water species find their way into the Antarctic Sea (such are Heterorrhabdus profundus, Labidocera acutifrons, Metridia princeps, Lucicutia grandis, Gaidius major, Arietellus setosus).

Until the 'Gauss' collections are fully examined it is of course rash to say that no
typically Antaretie species ever find their way northwards ly way of the deep Atlantic trough, but there is little evidence of it in the many collections made by the 'Gauss' throughout its Atlantie traverse. A certain number of species which are uhiquitous, such as Oithoua similix, some species of Oncea, Inaluptilus lungicomin, Gaidius temispinus and major, and Gactames (armiger, and possibly caudmi), extend from the Faroe Channel to the southern ocean; but so far as the evidence at present goes, the Antaretie Copepod fauna is distinet from that of the Aretie seas, and the species which are typieal of this region, and most numerous, do not extend far into the Southern Atlantie. As no observations have been made of the Copepod fauna of the deep water of the Indian Oecan, it is quite possible that Antaretie species may hear a considerable extension northwards in this direction.

It is curious that 110 great number of Harpucticider appear in the collections of the 'Diseovery,' only three examples all told of Harpucticus, furcifer, which is somewhat different from any Harpacticus of the northern hemisphere ; and only five are deserihed from the 'Belgiea' collection by Dr. Giesbrecht, two of which (II. brevicormis, II. chelifer), are identieal with northern speeies. A fair number of speeies oceur in the 'Gauss' collection, but these have not yet been examined.

The paucity in numbers of the IHarpacticider in the 'Discovery' eaptures is no doubt due to the mode of collection.

II.

List of Copepods in the 'Discovery' Collection.

CALANUS (Lfach).

The species first deseribed by Brady as Calamus propiuquus has been sulisequently described by Giesbrecht, who now coneludes ('Belgiea' report, p. 16) that the eopepord described by himself in 1892 as C. propiuquus from the S.W. Atlantie, between 37° and $52^{\circ} \mathrm{S}$., is not this speeies, hut one closely resembling it, to which he gives the name
C. simillimus. Giesbrecht also suggests that the similarity between the two species leads to the doubt whether C. propinquus has such a wide distribution as Brady imagined. This author gave it a distribution throughout all oceans-in the southern Indian, north in the Pacific (to $35^{\circ} \mathrm{N}$.), and in the Atlantic to $30^{\circ} \mathrm{N}$.*

I have roade a careful examination of dissected specimens from the following localities:

$$
\begin{aligned}
& \text { Lat. } 56^{\circ} 31^{\prime} \mathrm{S} . \quad \text { Long. } 156^{\circ} 19^{\prime} 30^{\prime \prime} \mathrm{E} . \\
& \text { Lat. } 59^{\circ} 19^{\prime} \mathrm{S} . \quad \text { Long. } 124^{\circ} 24^{\prime} 30^{\prime \prime} \mathrm{W} . \text { (28. vi. } 04 \text {). } \\
& \text { Lat. } 84^{\circ} 01^{\prime} \mathrm{S} . \quad \text { Long. } 170^{\circ} 49^{\prime} \mathrm{E} . \\
& \text { Lat. } 58^{\circ} 49^{\prime} 45^{\prime \prime} \mathrm{S} . \quad \text { Long. } 154^{\circ} 48^{\prime} \mathrm{W} .(24 . \text { vi. 04). } \\
& \text { Lat. } 50^{\circ} 48^{\prime} \mathrm{S} . \quad \text { Long. } 170^{\circ} 2^{\prime} \mathrm{E} \text {. }
\end{aligned}
$$

and in these hauls occur many examples of a Calanus which answers in all particulars to Giesbrecht's C. simillimus. As these have well-developed genital segments, in some cases with spermatophores attached, and differ from C. propinquus not only in size, being very much smaller than this species, but also in the proportions of the third and fourth pairs of feet, and the scrration and proportions of the fifth pair, there is no doubt that this entirely agrees with the animal briefly described by Giesbrecht; and I think he is correct in regarding it as a species different from C'. propinquus, and that the distribution of the latter is not so extensive as was imagined by Brady. I therefore describe C. simillimus (Giesbrecht) as a diffcrent species.

A third species of Calomus which does not agree with either of these, being altogether less robust than C. propinquus, and constantly much smaller, but at the same time larger than simillimus, but with the basals of the fifth pair without any marginal teeth, and the distal margins of the basals of the second to fourth pairs with a row of spines, may probably be C. tonsus (Brady), but the description given by this author is of the briefest character, and he gives only two figures, which do not assist in the identification. However, I attach to it Brady's name, as it is probably the animal meant by Brady.

Four species of Calanus are found in the 'Discovery' collection :-

1. Cal. propinquus (Brady).
2. Cal. acutus (Giesbrecht).
3. Cal. simillimus (Giesbrecht).
4. Cal. tonsus (Brady).

* Lat. $46^{\circ} 46^{\prime}$ S. Long. $45^{\circ} 31^{\prime}$ E.
Lat. $64^{\circ} 37^{\prime}$ S. Long. $85^{\circ} 49^{\prime}$ E.
Lat. $47^{\circ} 25^{\prime}$ S. Long. $130^{\circ} 12^{\prime}$ E.
Lat. $35^{\circ} 41^{\prime}$ N. Long. $157^{\circ} 42^{\prime} \mathrm{E}$.
Lat. $40^{\circ} 3^{\prime} \mathrm{S}$. Long. $132^{\circ} 58^{\prime} \mathrm{W}$.
Lat. $9^{\circ} 43^{\prime} \mathrm{S}$. Long. $13^{\circ} 51^{\prime} \mathrm{W}$.
Lat. $3^{\circ} 10^{\prime} \mathrm{N}$. Long. $14^{\circ} 51^{\prime} \mathrm{W}$.
Lat. $37^{\circ} 17^{\prime}$ S. Long. $53^{\circ} 52^{\prime} \mathrm{W}$.
Off Terguelen Island. Brady, loc. cit.

1. Calanus propinguts.

(Plate I., figs. $1,2,3,3^{3}, 4$.)
C'alanus propinquus, Brady, Rep. 'Challenger ' XIX.., Copepoda (1883), p. 3.

- Giesbreeht, Fauna u. Fl. Neap. XIX. (1892), p. 91.
,, Giesbreeht und Sehmeil, Das Tierreieh, Copepoda (1898), p. 15.
," Giesbreeht, 'Belgica' Report, p, 16.
,, T. Seott, Trans. Linn. Soe. VI. (1893), p. 25.
The length of this copepod given by Brady is $5 \cdot 5 \mathrm{~mm}$., by Giesbrecht $4 \cdot 9-5 \cdot 3 \mathrm{~mm}$. The majority of the 'Discovery' and 'Gauss' specimens measure under 5 mm . The cephalothorax is rather over three times as long as the abdomen, furcal segments twice as long as broad. Head evenly rounded, without any trace of crest. Head separate from first thoracic segment. Last thoracic segment latcrally produced a little, and ending in short points. Anterior antennæ not reaching beyond the furca (thus shortcr than deseribed by Giesbreeht, in these specimens). Relative proportions of 24 th to 25 th segments as $18: 21$.

Second feet Re 3 divided into proximal portion 24 ; distal 25.

| Third | ", | $"$ | $20 ;$ | , | 23. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fourth ", | $"$ | , | $36:$ | , | 20. |

Ri 3 with seven bristles, end saw two-thirds the length of Re3. Fifth feet, $B 1$ with inner margin convex below, concave distally, with thirtecn or fourteen teeth, and distally with three teeth, larger than the others. Ri 3 with five hristles, two outer, two apical, one inner. This animal is mueh more robust than the next species (simillimus).

The δ is about the same size as the q, and the chicf differences consist in the structure of the fifth feet and shape of the head and thorax. The latter is very like C. finmarchicus, the head oval, rounded, and produced, the first thoracic segment with deep indentation between it and the second, and its posterior margin protruded. The anterior antenne with the basal joints much coalesced. Posterior footjaw with a long, stout, densely-feathered dorsal bristle. Fifth left foot much prolonged, Re 1 and 2 elongated, Re 3 very short and pyriform shape, with short distal bristle. Ri only half the length of Re, with respectively 1:1:6 short weak bristles. Right foot Ri nearly as long as $R e$, with 1:1:6 bristles. He not much more than half as long as $R e$ of opposite side. First basal with inner margin armed with seventeen to twenty large tecth; in its upper part slightly concave, in its lower part slightly convex, the teeth all of pretty much the same size.
2. Calanus acutus.
(Plate I., figs. 9, 10.)
Cclanus ucutus, Giesbrecht, ' Belgica ' Report,* p. 17.
This eopepod was first described by Giesbreeht from the Belgian South Polar Expedition, and in the 'Diseovery' collection it forms the ehief constituent of the South Polar copepod plankton, along with Euchacta antarctica.

The majority of the animals I have met with both in the 'Gauss' and 'Diseovery ' collections are smaller than the size given by Giesbreeht, viz., $4 \cdot 7-5 \cdot 3 \mathrm{~mm}$. But few of our specimens reach 5 mm . length, the majority being from $4 \cdot 5-4 \cdot 7 \mathrm{~mm}$. The cephalothorax is not quite four times as long as the abdomen, the head divided from the first thoracie segment, the last segment of the latter produced laterally, but with evenly rounded margins and no points. In lateral aspect the head is slightly produced forwards, and more inchined to be oval than rounded. In the dorsal aspect it has a distinet triangular appearance, with slight erest in the mid-line. In its broadest part the thorax is 1.15 mm . broad, that is, three times as long as broad.

The fureal segments are a very little longer than the anal, and nearly twiee as long as broad. The anterior antennæ vary in length in different animals, in some being only as long as the furea, in others one or two joints longer, and are distinguished by the comparative length of the last joint, which is about twiee as long as the one before it.

In the seeond feet the $R e$ is divided into two portions, proximal $=24$; distal $=13$.

$$
\begin{array}{llllll}
" \text { third } " & " & " & " & =29 ; & "=15 . \\
" & \text { fourth } " & " & " & " & =15 ;
\end{array}
$$

The Ri 3 has in the seeond and third feet eight bristles, in the fourth only seven, and in the fifth only four (with no outer marginal bristle). The end saw of the Re 3 of the second feet is shorter than the Re 3 ; in the third and fourth pair longer.

The fifth feet are distinguished by the absence of the outer marginal bristle of the $R i 3$, and the total absence of teeth or hairs on the inner margin of the first basal. All males appeared to be immature.

3. Calanos simillimus.

(Plate I., figs. 5, 6.)
Calames simillimus, Giesbrecht, 'Belgica' Report, p. 17.
I 2.5-2.9 mm. ; cephalothorax, 1.9 mm . ; abdomen, $\cdot 6 \mathrm{~mm}$. long.
Head separate from first thoraeie segment, evenly rounded, without any trace of crest. Head not quite as long as the rest of the thorax (as 18:21). Last thoracic

* "Belgica Report" is throughout this monograph used to indicate" Résultats du Voyage du S. Y. 'Belgiea' en 1897-1898-1899." Lapports Scientifiques. 1902.
segment laterally produced somewhat and ending in short points. Anterior antenne about as long as the furca, or about one joint louger.

Genital segment as long as the next two. Furca three times as long as broad, and longer than the anal segment.

Second feet, Re 3 divided by the marginal spine into two about equal parts.
Third feet, Ri3 with eight bristles (four outer, two apical, two inner), Re 3 divided iuto two parts, of which proximal : distal $=17: 13$.

Fourth feet, Re 3 divided by the marginal spine, proximal : distal $=20: 11$.
$R i 3$ with seven Si (two outer, two apical, three inner), terminal saw of Re 3 only three-quarters as long as Re 3.

Fifth feet $B 1$ toothed, witl fourteen teeth on the rather eonvex margin, and at the distal end a slight break in the continuity, with three rather larger teeth somewhat hidden, in front view, by the upper tecth of the marginal surface. Ri 3 with five bristles (two inner, thin and short, two apical, and three outer). In the second pair the $R i$ reaches about the end of the $K e 2$, in the third pair to the first imer marginal bristle of the exopodite, and in the fourth pair as far as the second inner marginal bristle, in the fifth pair beyoud the origin of the first imner marginal bristle. The endopodites are therefore proportionately larger than in C.tonsus, and the third segment of the exopodite is not four times as long as broad.

While this species agrees with C. propinguus in many particulars, the proportions of the third and fourth feet differ, also the toothing and convex margins of the basals of the fifth feet, and the size. Many of the examples were quite adult femalcs with spermatophore attached, so there can be no question of their loeing merely undeveloped camples of C. propinguus, and, as before mentioned, this species has a considerable area of distribution in the southern oceans.

4. Calanus tonsus.

(Plate I., figs. 7, 8.)
Calemus tonsus, Brady, Rep. XIX., 'Chall.' Report, p. int.
" \quad Seott, Tr. Linn. Soc. VI. (189:), p. 25.
" " Giesbreelht, Fauna n. Flora Neap. XLX., p. 22.
" \quad, Dihl, Yerh. Dentsehes Zool. Gesells, IV. (1894), p. 7 7.
Brady's original description of this species is very incomplete, and he merely states that it is "like C'. finmarchicus and propingues, except that the anterior antenne are almost devoid of setre, except on the three apical joints; the posterior antenne are like those in C. propinguus, the fifth pair without hasal teeth, and the first abdominal segment large and tumid. The anterior antenne are as long as the body of Size 3.6 mm ." He gives only two figures-viz., of the anterior antenne and the abdomen.

Giesbrecht includes it under the "Unbestimmbare species," remarking that the YOL. IV.
I.
first character probably results from the bad preservation of the animals; the seeond is a charaeter of other members of this genus ; and the third point is characteristic of gracilis and robustior.

Seott merely mentions that " the large and tumid first abdominal segment seems to be a fairly good eharacter " (loc. cit.). However, this is not a characteristic of this species any more than of C. rolustior, and the cxistence of this speeies up to the present time therefore must be regarded as extremely doubtful. However, the 'Diseovery' eollections eontain several examples of a copepod, which, if it is not Brady's species, answers fairly well to it so far as his description goes.

- I $3 \cdot 5-3 \cdot 6 \mathrm{~mm}$. long (cephalothorax, $2 \cdot 75$; abdomen, $\cdot 75$. Body broadest at the end of the first thoracic segment (1.1 mm . broad). Abdomen short, genital segment broad, and one-third broader than the following segment. Fureal segments not quite twice as long as broarl, and nearly twice as long as the anal segment. Head evenly rounded, without trace of crest, separate from the first thoracic segment, last thoracic segment only slightly produced, and with rounded margins. Anterior antennæ only reaching the end of the third abdominal segment, the only long bristles on the twentythird, twenty-fourth, and twenty-fifth segments, the twenty-fourth joint twice as long as the twenty-fifth. Mouth parts resembling C. finmarchicus.

Second feet-second basal with four large spines on the distal margin at the inner side. Re 3 divided by the external outer spine into proximal and distal portions respeetively as $23: 16$. Ri 3 with eight bristles. The whole endopodite does not reach beyond the distal margin of Re 2. Re 3 as large as Re $1+R e 2$.

Third feet-four large spines on $B 2$ distal inner margin, endopodite reaching a little beyond the distal margin of Re 2. Re 3 divided into proximal part $=32$, distal portion $=16$. Ri 3 with eight bristles.

Fourth feet-Re 3 divided into proximal part $=37$, distal $=15$; apieal saw only seven-ninths as long as $R e 3$. $R i$ with seven bristles only (three inner, two outer, two apieal). $\quad B 2$ with one or two spines on distal inner nargin.

On the second, third, fourth and fifth feet the outer margin of the second basal is distally armed with a spine; in second-fourth, the Re $3=R e 1+2$, and is about three times as long as broad.

Fifth feet-first basal with straight inner margin without teeth or hairs, $B 2$ with five spines on the distal inner surface. Ri 3 with six bristles (two inner, two outer, two apieal).

The only Calemus with which this shows agreement is, possibly, Brady's C. tonsus; but Brady's description is so fragmentary that it may well be another species. It oceurred in some numbers at Station, $22 \cdot 11 \cdot 01$, Lat. $56^{\circ} 31^{\prime}$ S., Long. $156^{\circ} 19^{\prime} 30^{\prime \prime}$. Such males as were observed were all immature.

RHINCALANUS (Dana).

(Plate II., fig. 6.)
Rhinc. grandis, Gieshrecht, 'Belgica' Rep., p. 18.
? Rh. gigas, Brady, 'Challenger' Rep. NIX., p. 42.
" Scott, 19th Rep. Scotch Fishery Board (1901), p. 237.
" Gicsbrccht, Fauna u. Fl. Neap. XIX. (1892), p. 158.
Rill. gigas was described by Brady as distriluted over a very wide area between long. $53^{\circ} 32^{\prime} \mathrm{W}$. $-130^{\circ} 52^{\prime} \mathrm{E}$. and lat. $36^{\circ} 44^{\prime} \mathrm{S}-65^{\circ} 42^{\prime} \mathrm{S}$. Much doult has been expressed by Gieshrecht as to the validity of this species, and the figures given by Brady of abdomen and of the whole animal are those, in Giesbrecht's opinion, of immature animals, and this author thinks that Brady's figure of the first feet is really of one of the other pairs of feet.

Scott's specimens (Fair Isle and Firth of Forth) are regarded by Giesbreeht as Rh. nasutus (Th.3 and 4 with dorsal or with a lateral spine, as in nasutus, and a pair of small dorsal points on the genital segment). Möbius's specimen from the north of Scotland is also identical with nasutus. Rll. nasutus is very common in the Faroe Channel and seas off the north of Scotland, and occurs abundantly in my collections made in these regions and along the Atlantie trough, west of Ireland, and also appears in the 'Gauss' collections as far south as lat. $20^{\circ} \mathrm{N}$., while in the same collections Rh. grandis (Giesbrecht) appeared. From the remarks of Sars in "Crustacea of Norway," Vol. IV., p. 15, it might be inferred that Rh. nasutus is of rare oceurrence in the Northern Ocean ("two specimens were taken east of Iecland, one specimen by Ifjort between Seotland and Norway, and it has not yet been found in the immediate vicinity of the Norwegian coast.") However I have taken it in abundance on many occasions throughout the Faroc Channel. It is rather important to establish the identity of Brady's Rh. gigas, and of two preserved specimens at the British Muscum, which I have examined, one measured 5.8 mm . and another 6.0 mm . Both were immature females with four-jointed abdomen, lateral spines on $T h .3$ (small), and on Th. 4 (large), with none on the fifth segment, resembling Rh. grandis, one dorsal spine on the first abdominal segment (no dorsal spines on the thoracic segments), and so far as could be seen without dissection, the first feet had an exopodite of two segments only, and the fifth pair consisted each of only one ramus of three segments. These two animals were, of course, very much smaller than deseribed by Brady ($8 \cdot 5-10 \mathrm{~mm}$.) and were undoubtedly immature, and the species may well be identical with young IRh. grondis (Giesbrecht).

Rhincalanos grandis.
Rhincalamus grandis, Giesbrecht, 'Belgica' Rep., p. 18.
o $7 \cdot 2-8.0 \mathrm{~mm}$. Head produced in front, dorsally roughly triangular in shape, with large lateral swellings at the base, rostrum not visible from behind. The cephalothorax is over six times as long as the abdomen, which is composed of three segments. A pair of short spines on the anterior margin of the third thoracie segment, and a pair of strong and longer spines on the fourth segment, differentiate this species from nusutus, also the absence of any spines on the abdominal segments. The first pair of feet have the $R i$ and Re of only two segments, Re three with two marginal spines; other feet (except the fifth) have three-jointed rami.

The fifth pair, of one branch only on each side, with three segments, have on the second segment a long inner marginal bristle, and on the last segment three bristles of nearly equal length, two apical, of which the outer is the thickest and the middle one a little the longest, and one on the inner distal margin. A short spine is present on the outer margin in its upper third. The anterior antennæ are about six joints longer than the furca. Adult males were absent.

These examples are absolutely identical with Giesbrecht's species.

METRIDIA (Boeck).

One of the most remarkable things about Brady's 'Challenger' Copepoda is the omission of mention of any example of this genus from his report. Distributed throughout the Atlantic from the North to the South Pole, and in the Pacific, and throughout the track followed in the Atlantic and Southern Ocean by the 'Challenger,' the absence of mention of any species of this genus is certainly extraordinary. In the northermmost regions Metridia longa oecurs (Sars, Norwegian North Polar Expedition) throughout the Faroe Channel and the Atlantic trough as far south as Valentia in Ireland ; and south of the Wyville Thompson ridge, M. lucens, normani and curticauda (Wolfenden) ; while south of Lat. 40° and throughout the Atlantic oceur M. curticauda, brevicauda, princeps and vemusta; but south of Kerguelen appears a new and characteristic species, M. gerlachei, which replaces all others. This is the representative species of the South Polar seas, and it appears abundantly in the 'Gauss,' 'Diseovery,' and 'Belgica' collections, and it is as characteristic of this area as M. longa and lucens are of the northern cold area. II. princeps occurs seldom, and M. brevicanda as a straggler, outside its proper area of distribution.

Metridia gerlachei.

Metrillia gerlachei, Giesbrecht, 'Belgica' Report, p. 2̄.
i $3 \cdot 5-3 \cdot 8 \mathrm{~mm}$., very variable in size, oceasionally a little larger and often smaller, but the average of size of examples in the 'Discovery' and 'Gauss' collections is rather less than that given by Giesbrecht for the 'Belgiea' specimens. The cephalothorax is one and a half times as long as the abdomen, head separate from first thoracic segment, last segment with rounded margins. The abdomen has the proportional length of its three segments as 9 (genital) : $6: 4$ (anal), and the furra is one-fifth longer than the amal, and three times as long as broad. It is divided into two portions hy the onter marginal loristle, of which the proximal is twice the length of the distal.

The shape of the head and thome is in this species characteristie, the back beiug extremely giblous, and the head with very bold curve, which makes it casily reengnisable at sight from any other species of this genus. The anterior antenne are comparatively short and do not reach beyond the genital openings. The first and second segments are coaleseed ; the eighth, minth, tenth, eleventh, have only faint indieations of separation; the thirteenth and fourteenth joints are not so clearly divided as the others. There are strong teeth on one, two, three, five, seven (one each), those of the third, fifth, seventh joints the strongest, and directed straight forwards. The æsthetasks are numerous.

The endopodites of the second pair of feet have the usual excavation and hook process on the first segment, but in this species the inner hook is execedingly strong. In the fourth pair the end saw is only two-fifths of the whole length of the Re 3 (shorter than in Giesbrecht's examples).

The fifth pair consists on each side of three segments, but the distal segment is more or less completely divided into two, the division however is not complete. The two basal joints are of about the same length and breadth, cach as broad as a little over half the length. The third joint, however, is not more than four-fifths as long as the basals, and only half the headth. The second joint bears one short distal hristle, the last joint one outer marginal lristle in the proximal half, and three distal bristles, of which the imermost is the longest and thiekest, the outermost the shortest.

Metridia princei's.
(Plate III., figs. 3, 4, 5.)
Motrilite princeps, Giesbrecht, Atti Line. Rend., Ser. 4, v. 5, p. $\because 4$.
" \quad, \quad ", Fana u. Fl. Neap. NLX., p. 840.
$" \quad " \quad, \quad$ Farran, Ann. Rep. Fish. Ireland 190:2-11;, PI. II. App. II. (1905).
? Jetritia mucruru, Siars, Bull. du Mns. Oceanog. Monaco, 1905, no. 10, p. т.
Though only one example of this species oceured in the 'Discovery' collection, it was frequent in the ' (iauss' collection, not only at sereral Ithatic stations, hat also
at the southernmost stations. Northwards it ranges to the west coast of Ireland, and, as has been mentioned, has an extreme southern distribution. Giesbrecht's deseription was given from only one specimen, and compared with Sars', very briefly described, 1I. macrura.
M. princeps, Giesbrecht.

Cephalothorax one and a half times as long as the abdomen
Anterior antenna extend beyond the furea
Short teeth on $1,2,4,5$, and 6 , the 2 nd the longest
Genital segment longer than both the following Anal segment half as long as the preceding one Furea twice as long as anal, and 5 times as long as broad

Size $8^{5} \mathrm{~mm}$.

1. macrura, Sars.

Tail about as long as the anterior division
Longer than the body
Only feeble traees of the strong teeth of princeps
?
About is long as the two preeeding segments
5 th feet like princeps, but less unequal
Size 10.50 mm .

Of the many examples which have come under my notice I find that the relative sizes of the abdominal segments and furea are subject to some variation, thus :-

The genital segment is thus alyays twice as long as the two succeeding segments, the anal is not more than half the preceding segment, the furca is generally longer than the two preceding segments, and usually from seven to nine times longer than broad. The teeth on the antennæ are weak, and entirely resemble the figure given by Giesbrecht in Plate 33, fig. 3 (o . cit.).

It is difficult to resist the conclusion that these are one and the same species, and not two different speeies. The male was not described by either Gieshreeht or Sars, but I have met with several examples.

ㅇ. The largest adults were from $8-9 \mathrm{~mm}$. in length.
The body is very transparent, the head evenly rounded, eephalothorax (4.154.5 mm . long, abdomen 4.0 mm . long), only slightly longer than the whole abdomen, and a little over one-third as long as broad.

The genital segment is larger than the next two, the anal not more than half as long as the preceding, often much more than the combined length of the two preeeding segments and $6-9$ times as long as broad, and divided into two portions by the marginal bristle, of whieh the proximal is to the distal as 8:5. The right fureal segment is sometimes a little longer than the left. Anterior antenne at least three joints longer than the furea, the basal joints hroad, with short teeth on the basal seven joints, of which those on the first two joints are the largest. The
distal joints taper and are very slender. Proportional length of joints of anterior antennæ:-

1\&2	3	4	5	(i)	7	889	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
12	\pm	5	5	5	5	1 !	6	9	9	12	12	13	13	1.4	14	15	10	9	10	10	7	3

The eighth and ninth joints are quite coalesced, but in some there is a weak line of division.

The second pair of feet have each the characteristic hooks on Ri1, and the outer one is the longest. The surface of the second basal is beset with short spines, but not the Re 1. The third feet are normal and with shortened end saw. The fifth pair each consist of four segments, of which the basal is greater than the sccond, this longer than the third, and third longer than the fourth and terminal segment. The first joint has on its surface a considerable bunch of long stiff hairs (as in princeps), the second joint has a long stiff feathered bristle on the outer distal margin, and the third joint has a short upright spine on the outer distal margin, in all specimens (not on the inner side as figured by Giesbrecht), and the end joint has three rather long fine bristles, of which the innermost is the longest. The spine on the third joint was in one example replaced by two very short spinules on the right foot, while none were present on the left side.
\% $5 \cdot 8-6 \mathrm{~mm}$. long (cephalothorax $3 \cdot 25 \mathrm{~mm}$. Abdomen $2 \cdot 3 \mathrm{~mm}$. long).
Relative lengths of the abdominal segments $=14,10,10,4$, and the furcal segments 13. The left furcal segment is a little the largest and thickest, and six times as long as broad, and three times as long as the short anal segment.

The anterior antenne extend for about three joints beyond the furca, as in the female, and the left one is a clasping organ with weak joint between the serenteenth and eighteenth segments. The segment beyond the elhow is very long and thin, and as long as the next two distal joints. There are four joints beyond the ellow. The conjoined first and second (basal) joints have two strong teeth, the distal one the largest and curved slightly forwards. The fourth joint has a smaller tooth. Fifth feet: The right foot with very long first joint, the second short, but with very strong, hroadbased curved and long hook, the third joint nearly twice as long as the second, and the fourth and end joint a long simple spoon-process twice as long as the third. In the left foot the first joint is very small, the second nearly twice as long, the third a short joint, the fourth a very long simple curved spoon-shaped process. On the imer margin (proximal) of the fourth, of the third, and the distal foot of the second are fine hairs. Both feet are of nearly similar length.

EUCHAETA (Philippr).

Two representatives of this genus appear in the 'Discovery' collectionsE. antarctica, and another which appears to have constant differences, and to which I have attached the name E.similis. I do not in this collection find any example of

Giesbrecht's sperics E. austrina, though I have found it in the 'Gauss' collections. E. antarctica appears in many stages, extensive captures consisted wholly of immature specimens, but there are many adult examples. Many males appear amongst these, and while the females are very distinctively different, I am not able to discriminate between those males, as to which definitely belong to anturctica, and others which might belong to similis. Both species are very closely allied, and differ very considerably from the large species of the northern cold seas, viz, norucyict, glacialis and berbrata.

Euchaeta antarctica.

(Plate IV., figs. 5, 6.)

Euchueta antarctica, Giesbrecht, 'Belgica' Report, p. 21.
This is one of the most abundant copepods in the 'Discovery' collection, appearing in all stages of growth, and in some samples almost to the exclusion of other species.

Size of adult examples $7 \cdot 6 \mathrm{~mm} .-8 \mathrm{~mm}$. Head evenly rounded, without frontal prominence and with short rostrum directed forwards. Last thoracie segment with rounded margins, produced forwards and with a bunch of hairs on each side. The aldominal segments have the postero-distal margins armed with rather strong bluntly conical and striated teeth, and the two middle segments have on the ventral side bunches of long hairs. The furca and bristles are the same as in E. similis. The genital protuberance occupies the lower half of the segment, its upper margin is not deeply concave like similis, but the whole swelling is directed downwards, and its upper margin is slightly convex. Above the genital swelling is a secondary prominence, which in the ventral aspect is seen to consist of two valve-like chitin thickenings. The lower part of the protuberance has two lateral lobes, the upper are small, and above this a prominent horn directed straight forwards and never absent in adult specimens of E. ontarctice, making it quite characteristic of the species.

In the ventral aspect the appearance is quite different from that of similis. The genital opening is oval, almost round, with lateral cushions, and above the upper edge of the genital opening guarded by a chitin ridge, is the horn.

The whole swelling is quite symmetrical, rather conical, and occupies quite the lower part of the segment.

The first pair of feet have the outer margin very concave above and very convex below, with a bunch of hairs on the Re 1 , and a long seta. The seta of Re 2 is also very long and thin. The Re 3 is only half the length of the coalesced Re 1 and 2.

In the second pair the Re 1 has a very short Se, that of Re 2 is very long and more than twice as long as the $S c 1$ of Rc 3 .

In $R c 3$, the $S e 1$ does not reach the origin of $S c 2$, the $S e 2$ does not quite reach the end of the segment, and is three times as long as $S e 3$ and twice as long as $S e 1$. The Se 1 and 2 are very greatly curved and almost sickle-shaped.

111 the fourth pair the Re 3 is not three times as long as broad (16:6). The anterior antemme are a little longer than the cephalothorax.

The δ is a little smaller than the q, and presents the same sexual differences as in other Euchaetae. The bunches of hairs on the last thoracie segment, so prominent in the 9 , are absent in the δ.

The first feet have a threc-jointed exopodite, the outer margin of which is not su concavo-convex as in the q, and its Se are short.

In the second pair, the $S e$ of the exoporlite are also smaller, the Se of Re 2 omly reaching the origin of the $S e 1$ of $R e 3$; the $S e 2$ of Re 3 being little more than half the length of the distal part of the segment. The fifth feet are characteristic. The penultimate segment of the left foot is prolonged on the upper margin into a strongly toothed process, and has a setose conical unhaired process on the distal margin, the last segment into a long process, narrow and with a strong bunch of hairs at the distal extremity, and with a large conical and strongly haired process. (This process is sometimes nearly as long as the principal process of the penultimate joint.)

The first hasal is short, the second hasal long, and with very small and rudimentary endopodite.

The right foot has short first hasal, very broad second basal, long first and seemend Re (which are coaleseced), and with the last segment blunt and romeded.

Euchafta similis.

(Plate IV., figs. 1, 2, 3, 4.)
This species occurs plentifully in the same samples in which E. antarctica is present. For a long time I regarded them as merely different stages in the history of the same animal, but the careful examination of a great number of individuals from different tow-nettings proves the constancy of the points of difference between the two, and as many of the E. antarctica and E. similis have spermatophores or egg sacs attached, I have come to the conclusion that, though so very similar in most characters, the two specics must be separated on account of the invarially different characters of the abdomen and genital segment.
E. similis is constantly rather larger than E. antarctica, $8.6 \mathrm{~mm} .-8.8 \mathrm{~mm}$., and more robust, the head flat and rostrum small, but strong and directed forwards and rather upwards. The eeplatothorax is two and a half times as long as the abdomen. The last thoracie segment is produced forwards, slightly triangular shapel, with evenly rounded margin, no spinc, but a lunch of long hairs on each side. The abdominal scgments, of which the genital is twice as long as the next, are covered with fine hairs, nowhere with large bunches, and the posterior distal margins have only fery small tecth, not large, as in antercticn. Furea with, on each side, a very short dorsal bristle, the ventral accessory bristle not geniculated at the base, though bent outwards, its length not more than about half of the two long tail bristles (next to the innermost).

Genital segment with very prominent genital tubercle, oecupying half the segment, (the lower half only), directed slightly upwards in lateral aspect, with apparently three lobes, an upper and lower, each large with small middle lobe, and without any eminence on the upper part (of the ventral surface) of the segment as in antarctica, and also invariably without the ventral horn which is so eharaeteristic of antarctica. In the ventral aspeet the genital tubercle appears to be obliquely placed, directed downwards towards the left, the vulva guarded by two prominent flaps of which the right one is below the left one. The whole tubercle occupies more of the left than the right side of the segment, which in the dorsal view is only slightly swollen at each side.

The first and seeond pairs of feet and the number of bristles on the maxilla are the same as in antarctica.

While the female is so distinetly different from that of E. antarctica I am unable to find similar distinetion in the males. Both kinds appear frequently to oceur together in the same sample, and all the males appear to be alike.

ONCEA (Giesbrecht).

Oncea curvata.

Onrea curvata, Giesbrecht, 'Belgica' Report, p. 42.
According to Giesbrecht, this speeies differs from O. subtilis in the following points: Length, $0.6-0.8 \mathrm{~mm}$., the body lengthened, the three segments posterior to the genital are about as long as broad, and eomparatively longer than in any other Oncea species except subtilis (in which they are longer than broad), all three segments together are shorter than the genital (in subtilis, the genital segment is only a little longer than the two sueceeding segments), the furca is as long or a little longer than the anal segment (in sultilis shorter). The posterior antennæ in both kinds are similar, the maxillipedes, however, differ ; the terminal hook which, in subtilis, is thin and unarmed, is strong and beset with pretty long teeth on the coneave side, in curvata. The swimming feet are similar in both species, except that in curvata the proximal outer marginal bristle on Ri 3 occurs in all four pairs, while it is absent in subtilis, and the lancet-shaped apical bristle of the fourth foot is in curvata longer than in subtilis.

The few examples that occur in the 'Discovery' collections are smaller than Giesbreeht's examples, none being more than 56 mm . in total length (q s with egg sacs attached).

The genital segment is a little longer than the next three segments, the fureal and anal segments of the same length, the second abdominal segment as long as broad, and rather larger than the third segment, the relative lengths of Ab. 2:3:4 and furea being as $4: 3: 4: 4$, the latter nearly three times as long as broad.

In the posterior antenne, the first basal joint is the largest, and the inner margin of the second basal has a few fine teeth ; the distal segment has three proximal bristles
of unequal length, the middle one very short, and distal to it, a comparatively long and slightly armed bristle, terminally four long and two shorter bristles.

The maxillipede is armed with a strong claw bristle, denticulated on the inner margin, and the second basal has two comparatively stout bristles, the proximal of which is armed with wide-a part bristles.

In the fourth pair of feet the apical bristle of the exopodite is longer than the third exopodite segment by one-third of its length.

The agreement, therefore, between this species and Giesbrecht's examples is very close, the only difference being one of size, and there is no dould that the two species are identical.

STEPHUS.*

Möbianus, Giesbrecht, Fauna u. Fl. Neap. XIX. (1892), p. 205.
Stephos, Th. Seott, 10 th Rep. Seoteh Fishery Board, Vol. X. (1892), p. 245.
Stophus =Stephos, Giesbreeht, 'Belgica' Rep., p. 20.
Stephos, Sars, "Crustacea of Norway," Vol. IV. (1903), p. 61.
Since Giesbrecht described the genus Möbicmus, which was subsequently identified with Stephos (Scott), several other examples of the same genus have been described. Scott himself recorded three specimens, viz., S. minor, S. fultoni, and S. gyruns, supposing the latter to be identical with Giesbrecht's Möbiomus gyrans.

Sars has described two new species from Norway, ciz., S. lamellatus and Scotti, which latter is again identical with Steplos gyrans Scott (not Giesbrecht). Gieshrecht's species (gyrans) is said by Sars to differ in the asymmetrical last thoracic segment and genital segment, the latter with "a number of irregularly arranged spiniform processes not found in any of the northern species," the last feet of the male also differing from S. scotti.

The 'Belgica' report contains yet another species described by Giesbrecht as Antarctic, viz., S. longipes. This species recurs also in both the 'Gauss' and 'Discovery' collections, and in the latter I find a further and considerably larger example, to which I liave given the name antarcticum.

As these descriptions are scattered over six different volumes, I think it may be of service to bring them together here.

1. S. GYRANS

S. gyrans, Giesbreeht, Fauna u. Fl. Neap. NIX. (1892), p. 205 ; (iesbreeht, u. Sehmeil, Das Tierreich, Copep., p. 29.

Furea longer than broad, anterior antenue reaching to end of genital segment, genital segment with a curved hook on ventral side, shorter hook on dorsal, fifth feet

[^1]in female, end segment rather curved and broad basally ; in male, left foot with several long appendages, right foot, thin appendages at end and rest foliate ; size $=0.8-1 \mathrm{~mm}$. (Naples.)

2. S. scotti.

S. gyrans, Scott, Nincteenth Rep. Scotch Fishcry Board (1901), p. 237.
S. scotti, Sars, "Crustacea of Norway," Vol. IV., p. 63.

Slender ; eephalothorax symmetrieal ; genital segment without spines, furca longer than broad, anterior antennæ reach end of abdomen 2 , Re of posterior antennæ twice as long as Ri. \quad, fifth, with denticles on last segment, which is clongated and pointed ; δ, fifth, penultimate joint of left foot tumefied, last segment with about half a dozen short processes; last joint of right foot with long, sickle-shaped process. Size $=\cdot 85-95 \mathrm{~mm}$. (Loch Fyne; Norway.)

3. S. minus.

S. minor, Scott, 'Tenth Rcp. Scotch Fishery Board, 1892, p. 245.

Robust, eephalothorax symmetrical; genital segment without spines, anterior antennæ about as long as the thorax, furea as long as broad, fifth feet in if with elougated last segment with two little lateral spinules; in of, right foot a long foliate joint at end, left foot with two digitiform processes at end, penultimate joint only slightly tumefied. Size $=0.74 \mathrm{~mm}$. (Firth of Forth.)

- 4. S. LameLlatum.
S. lamellatus, Sars, "Crustacca of Norway," Vol. IV., p. 62.

Short and robust, last segment asymmetrieal ; right side longest, genital segment unsymmetrical and rounded prominence on right side, but no spines; furea about as long as broad, anterior antennæ reach to furca, branches of posterior antennæ equal ; fifth foot in 9 , last joint elongated, with fine spine midway; in δ, left foot with much tumefied penultimate segment, with proximally a long spine, and last joint with a number (about nine) of leaf-like appendages; right foot not foliate, but last joint with three or four short, rounded appendages. Size $=1 \mathrm{~mm}$. (Norway.)

5. S. FULTONI.

S. fultoni, Scott, Ann. and Mag. Nat. Hist., 7th series, Vol. I. (1898), p. 185.

Cephalothorax symmetrical; genital segment with spine and hook ventrally. Fifth feet in q are larger and broader (knife-like) than the other, which is pointed ; in ot right foot with elongated penultimate segment and short, strong, foliate end segment; left foot, penultimate segment tumefied, extremity with five or six leaf appendages, and bifid claw. Size $=1 \mathrm{~mm}$. (Clyde.)

6. S. LONGIPES

S. longives, Giesbrecht, 'Belgica' Rep., P. 20.

Cephalothorax symmetrical; genital segment swollen laterally and roughly triangular-shaped, interior antenne not reaching end of thorax, no spines on genital segment ; fifth feet in q last segment elongated, curved (foliate), with external spine half as long as in of right foot with two middle segments very elongated, ending distally in curved look not articulating; left foot without tumefied segment, two middle elongated, last shorter with knob and spine, but no processes. Size $8-9 \mathrm{~m}$. (Antarctic). ('Discovery' and 'Gauss' collections. Wolfenden.)

7. S. ANTARCTICUM.

Roloust, cephalothorax a little unsymmetrical, right side prolonged; genital segment swollen laterally, with bunch of spine-like bristles each side; furca as broad as long; anterior antenne reach to Ab. 2 ; Re of postcrior antennæ longer than Ri. Fifth feet in of right side longest, each with three end spines, innermost hook-like; in δ, right with third joint elongated and club-shaped distally, with a large, roughly triangular plate, and last joint a strong, eurved hook; left foot, no tumefied segment, and last joint with distally a short-stalked haired knoh, no appendages. Size $=1 \cdot 75-2$ mm. ('Discovery' collection.)

Steplius hongiles.

$$
\text { (Plate V., figs. } 1, \ddot{3}, 3 . \text {) }
$$

Stophus longipes, Giesbrecht. 'Belgica' Rep., p. 20.
ㅇ.75-.80 mm. o $\cdot 65-70 \mathrm{~mm}$. Cephalothorax rather more than twice as long as the abdomen; head separated from first thoracic segment, but all segments very difticult to determine, owing to the indistinctness of the lines. Last thoracie segment with rounded margins and symmetrical. Abdomen in the female four, in the male five segments; furcal segments only as long as the anal, as broad as long, and with rounded margins, each with four tail bristles and a short fiftlo inner marginal bristle. Genital segment in the female as long as the next two, laterally with roughly triangular swellings, and in its greatest breadth, broader than long. Anterior antenna not as long as the thorax, and of twenty-three joints, the first, second, eighth and ninth conlesced, with few bristles, the longest on the seventh and eighteenth joints, but well supplied with long iusthetasks.

Posterior antemae with exopedite ahout one-third longer than the endoporlite. Posterior foot-jaw with rather thick first basal and $131: 132: \mathrm{Fi}$ as $8: 7: 6$; mandibles with broad-ended masticatory plate, one pointed outer tooth, with considerable space hetween it and the middle stout comparatively broad teefh, and three pointed inner teeth.

First feet $R i=1, R e=3$; no $S e$ on Re 1, and very short Se on Re 2 .
Second fect $R i=2, R e=3$.
Third and fourth feet $R i$ and $R e=3$.
Fifth, each of three segments, two basal, cach short and comparatively thick, terminal segment longer and thinner, prolonged, with a stout curved hook with short bristles on the upper margin and an external marginal thin and short bristle.

The male is rather smaller than the female, the abdomen has five segments, the mouth organs are as in the femalc, but the fifth feet are transformed into elasping organs, that of the right side of four segments, the left of five. The second and third segments of the left are clongated, the distal scgment short and broadened out, the distal extremity cuding in a spine, and at the opposite side a short knob process, apparently without marginal hairs.

The right foot with short broad sceond basal, and two distal very clongated and thin segments, with a long thin siekle-shaped process at the end, which appears to be a continuation only of the joint above it, and though forming an elbow, does not artieulatc.

In the general structure this small Copepod bears great resemblance to the species Stephus antarcticum, which, however, is twice as large; the fifth feet in the fcmale as well as the male are different, and the two species are therefore quite distinct.

Stephus antarcticun.

> (Plate V., figs. 4, 5, 6, 7, 8.)
i $1.85-2.0 \mathrm{~mm}$. long, eephalothorax about three times as long as abdomen, and in its broadest part distal of the middle line one-third as broad as long. Head evenly rounded, a little produced in front, but without traee of rostrum, a weak line indicating its division from the first thoracic segment. Last two segments of the thorax imperfectly divided, and last segment a little unsymmetrieal ; on the right side a little longer than on the left, produced into a round-ended margin, on the left side more acutcly pointed, whieh is most marked in lateral view. Abdomen of four scgments respectively proportioned : genital scgment, $2: 3$ and anal as $20: 13: 8: 8$; fureal segments as long as the anal, and as broad as long. Genital segment laterally swollen in the upper part (genital protuberances) and again slightly swollen laterally in its lower part, with on each side a bunch of rather long spincs, none dorsally. Furea with four tail setre on cach side, outer margins haired and with, on cach sidc, a short lateral spine instead of the usual bristle, and on the ventral side a very short accessory bristle. Of the tail bristles, the two middle ones are much the longest and thickest, and those of the right side more so than those of the left.

Anterior antemm reach in both sexes to about the end of the sccond abdominal segment, having twenty-four segments, the eighth and ninth coalesced. In the posterior antcune the exoporite is longer than the endopodite. The mandibles with branches
nearly of same length, masticatory plate with strong teeth. The posterior foot jaws with first and second basal and Ri in proportion of $24: 11: 20$; maxillæ, 132 with 5 ; Re with 10 ; Ril with $4, R i 2$ with $3, R i 3$ with six bristles, Li 2 and 3 present, and Le 1 with eight bristles.

The first feet have one jointed $R i$ and three jointed Re, without $S e$ on Re 1.
The second feet have two jointed $R i$ and three jointed Re.
The third and fourth feet have both rami three-jointed.
Fifth feet comparatively large, that of the right side a little longer than the left. Each of three segments, of which the two basals are equal in size, but the last segment on the right foot is a little longer than in the opposite foot. Each has terminally three spiny processes, the innermost comparatively thick, curved, and hook-like, and with hairs only on the outer margin. The two outer spines are neither much more than half the length of the inner one, and only half as thick.

The σ is a little smaller, 1.75 mm ., and of slenderer build; the asymmetry of the last thoracic segment is only slight, and on neither side is it so prolonged as in the female. The abdomen consists of five segments, the first segment is more laterally swollen than in the female, and is broader than long; the second and third segments ahout equal in length, and much longer than the anal, which is very short. The antennæ, oral organs and feet are the same as in the female, with the exception of the fifth pair, which are converted into two extraordinary appendages. Arising from a common basal, the right leg possesses four segments, the left five segiments. In the right leg the first joint is short and rather broad, the second elongated, rather longer and thicker than the third, which is a long thin joint with club-shaped distal extremity, and having attached to the joint it makes with the last appendage a broad, rather triangular plate covered with fine hairs and a few rather strong spines. The last joint is represented by a comparatively strong and large curved appendage, armed along its imer margin with short stiff bristles, these two terminal appendages resembling an a wkward-looking pair of shears.

The left foot, of five segments, has the first and second comparatively shorter but broader than the third and fourth. The fifth segment short and broad at the distal end, has externally a short curved tooth-like ending of the distal margin, and at the imner end an upright knob-shaped appendage, strongly armed all over, and especially at the base of the stalk, with short stiff bristles.

The fifth feet of the δ and $\&$ possess no near resemblance to similar organs in any other species of Steplus; the size of the animal, moreover, is comparatively large for any representative of this genus, and it must therefore be regarded as a new species. Several examples occurred in two or three of the 'Discovery' collections.

PARALABIDOCERA.

There is no mention of any example of the genus Lalidocera in Giesbrecht's 'Belgiea' report. In the 'Discovery' colleetion there are a great number of specimens of an animal superficially resembling Labidocera, but which does not agree with any known species of that genus, though bearing some relation to L. wollastoni. Between 60° and 70° S. Labidocera acutifrons appears in the 'Gauss' collection, but is absent from either the 'Diseovery' or 'Belgiea' collections, and this genus is thus very sparingly represented in the Antaretic area. The copepod referred to below differs distinctly from any known Labidocera in the character of the swimming fect of the female and the five-jointed abdomen of the male, and the fiftl pair of feet, and I have thought it better to create a genus for it.

Characters of the gemus.-Very similar in appearance to Labidocera, but a total absence of "ocelli," and of very unsymmetrical shape, the swimming feet without spines on the last segment of the exopodite, and the male abdomen of five segments.

Paralabidocera hodgsont.

(Plate VI., figs. 1-13.)
of $1.55-2 \mathrm{~mm}$.; of 1.6 mm . long. The head is evenly rounded, produced forwards a little, and in front are two delicate rostral filaments. There is no trace of eyes, either dorsal or ventral, but in some males there are two dark spots laterally on the head, and in a few females a dark pigmented spot on each side, which may possibly have been ocelli. But considering the mode of preservation, which included freezing and thawing, and a long sojourn in spirit, these organs may very well have been present at some time, and subsequently vanished. The head is quite without any trace of side hooks, and separated from the first thoracic segment; last two segments coaleseed and produced on each side into lateral expansions, but bluntly ended. Abdomen of three segments, the genital with large lateral outgrowths, and also dorsally and ventrally swollen a little; spines entirely absent; next segment also laterally enlarged, and anal segment small; fureal segments a little unsymmetrical, the right a little longer and broader than the left; all tail hristles comparatively short, consisting of four apical and one lateral marginal (situated a little distal of the middle), all slightly thickened at the base. There is also a small aecessory dorsal furcal bristle on each side. Anterior antennæ shorter than the cephalothorax and with only twenty-two distinct joints, very densely eovered with long bristles.

Proportional Length of Antennal Joints.

Posterior anteune with $R i$ much longer than $R e$, the former with six long bristles on the first segment, and seven and six bristles on the distal segment. Re very indistinctly segmented, the proximal joint very elongated.

Mandibles with Ri longer than Re, $B 2$ with one marginal bristle, masticatory plate broad, with one rather large tooth and a good space between it and the next five conical short tecth.

Maxilla with $B 2$ and $R i$ beut outwards; $B 2, R i$, and Re coalesced and almost indistinguishable; $L i 1$ with seven rather long and stout hooks and two shorter bristles; Li 2 a large lobe with three bristles, $L i 2$ with one bristle; Ri indistinctly segmented on the outer margin with five apical bristles; $R e$ scarcely segmented, with only two bristles; Le 1 with seven long and very thick bristles, and three shorter bristles.

Anterior foot jaws with lobes much compressed, and terminal five bristles longer than the proximal and also much thicker.

Postcrior foot jaw very similar to that of Anomulvecra. $B 2$ is short, but rather thick, and with one short bristle; Ri short, unsegmented, with only three terminal and short bristles.

One to four pairs of feet, with Ri of only two, Re of three segments. In the first pair the external marginal sete of $R e$ are long and thin, in the others the external spines are short, and in all there is only one marginal spine (apical) on Re 3.

First pair of feet, $B 1$ and $B 2$ with only slightly convex inner margin and no Si . Re 1 longer than Re $2+R e 3$, outside margin haired and long marginal bristle. Re 2 and $R e 3$ with similarly long marginal bristles. $\quad S e=1: 1: 2$ and $S i=1: 1: 5$. Ri2 nearly twice as long as $l i i 1$ and with 5 Si .

In the second pair $B 2$ is broader than long, the inner margin convex and without hairs or bristles; $B 1$ is also without Si. Ri 1 prolonged, Ri2 shorter (as 7:10). Ri 1 with $2 \mathrm{Si}, R i 2$ with 7 St .

Te 1:2:3 as $11: 6: 9$, with respectively $1: 1: 1:$ Se, that of Re 1 the largest and of Re 3 the smallest; the end saw ahout two-thirds as long as the whole Re; a small curved spine distal margin of Re 3 just external to the saw. 5 Si on Re 3.

3 frd fect. $B 1$ and $B 2$ without bristles or hairs, $R i$ as in the preceding pair, Re as in the preceding pair and with $1: 1: 1$ Se only.

4 thl fect. $B 1$ and $B 2$ as before. Ri1 with three $S i, R i 2$ with only sin Si. The three joints of $R e$ rather more equal in length, $S e 1: 1: 1$ as in the other feet. Ri 1 is more elongated than in the other feet and twice as long as Ri2.

In the second to fourth pairs the $R i$ is more than half as long as the Re and extends beyond the distal margin of $R e 2$. In all feet the number of external marginal spines is certainly peculiar, the nsual rule being three marginal spines on the Re 3 , so that the animal differs from any true Labidocera.

The 5 th fect consist of a common hasal and one ramus on each side of two segments $B \geq$ and R e. $R i$ mpresented mbly hat spine. The first and secoml lasals are
nearly equal in length and each about as broad as long. The second basal segment has at its distal inner margin a very stout articulating spine, $R i$ four-fifths as broad as this joint is long. On its outer surface, near the distal and outer end, is a delicate bristle. The third segment is nearly twice as long as the second basal, tapers to a point, and just below the distal end is a delicate little bristle. Near the end of the joint and on the inner side is a very stout broad-based spine, not articulating, and nearly half as long as the whole segment. Frequently the foot of one side is a little longer than of the other.

The whole animal is very unsymmetrical, especially in the shape of the last thoracic segment and the genital segment of the aldomen. The characters of the swimming feet, as to proportions, and especially as to the absence of spines on the last joint of the exopodite, and the alsence of anything like the usual ocelli of Labidocera, are points which appear to remove it from that genus. The abdomen of most females is more or less enveloped in a mass of colourless, structureless membrane. The d is distinetly five-jointed in the abdomen, whereas in Labidocera this is four-jointed. The right anterior antenna especially also differs from other species. From the characters of the female feet and the abdomen of the males I have thought it justifiable to create a new genus for this animal. I name the species after Mr. Hodgson, the naturalist of the ' Discovery' Expedition.
of smaller than the $q(1.6 \mathrm{~mm})$. Ceplalothorax with head separate from next segment, two dark lateral spots, but not ocelli, in front of the head. Abdomen little more than half as long as the thorax. Head evenly rounded, without side hooks, last thoracic segment rounded and not produced. Abdomen of undoubtedly five segments, of which the second is about as long as the third and fourth together, the first is very short, the fourth is twice as long as the anal, which is a short segment; the furcal segments, of which the right is a little larger than the left, are twice as long as broad and three times the length of the anal segment.

Right anterior antenna a clasping organ, the middle joints swollen, the joint before the elbow with a marginal row of small teeth and with only two distinct segments beyond the elbow, of which the distal is very long and thin (over three times as long as broad), and in its distal part carrying on the inner margin a very long spine tapering to a fine whip-like extremity, but broad in its basal portion. This appendage is half as long again as the whole joint. The joint immediately distal to the elbow has on its margin proximally a short but thick spine. I find it very difficult in any of the specimens, of which there are several, to agree with any degree of accuracy upon the exact number of segments in this antenna owing to the fact of its being curled up in every case. First to fourth feet and mouth organs as in the female.

5th feet, powerful clasping organs, the right one of four segments, the left of three, with a common basal. The first segment of the right foot has on its inner margin a small knob projection, the second has two short, thick spines, the third a fine spine, and the last joint is curved into a strong hook, without any appendages.

The first joint of the left foot has a shont spine on the external margin, and the last joint is broad proximally and foliaceous, and on its inner surface is a row of fine bristles, with three or four stiff and longer than the rest.

EUCALANUS (Dana).

That any species of Euculanus should be found at extreme southern latitudes is eertainly eurious. E. elongatus eertainly oeeurs south of lat. 40°, and about $40^{\circ} \mathrm{W}$. long., 'Gauss' collection ; and in the 'Diseovery' collection I have found about half a dozen examples of a Eucaltmus which 1 regard as a variety of E. subtemuis or mucronatus. This occurred at station marked 21. x. 01, lat. $57^{\circ} 25^{\frac{1}{2}}$ S., long. $151^{\circ} \frac{3^{\prime}}{4} \mathrm{E}$., and station lat. $56^{\circ} 31^{\prime} \mathrm{S}$., long. $156^{\circ} 19^{\prime} 30^{\prime \prime}$, 22. xi. 01 ; in both cases a long distance outside the Autarctie Cirele.

The q (no males were found) is 4 mm . long. The head is very triangular, elongated, and produced in front into a blunt point slightly bent downwards; there are lateral swellings as in attenuatus, the part behind is not, however, indented. The last thoracic segment is rounded. The abdomen has three segments, and one tail bristle on the left side is a little thicker and longer than the rest. The genital scgment is laterally swollen and broader than long. Posterior antenne with first and second joints of the exopodite coaleseed, the first joint of the endopodite about three times as long as broad, and about the same length as Ri2. The mandibles with very short Ri, the proximal part about three times as long as the distal, the whole Ri very much shorter than the distal part of the basal, and with four bristles and two short marginal bristles. Maxilla, B_{2} with five, $R i 1$ with four, Ri2 with four, $R i 3$ with five bristles. With some resemblanee to E. subtenuis, pileatus, and mucronatus, it is larger than any of them. The five bristles on the $B 2$ of the maxilla cause it to differ from either mucronatus or subtemuis, and it has eonsiderable differenees from pilcatus in size, posterior antenna and mandible. The shape of the head is ecrtainly not that of subtenuis, nor is it so triangular and pointed as mucronetus.

C"TENOCALANUS (Giesbrecht).

Ctenocalanus vanús.

Ctenocalemus remms. Giesbrecht, Atti Acc. Lincei Rend., Ser. 4, 1888, p. 335.
, , ", Fiuna u. Fl. Neap. XIX. (1892), p. 194.
This is extremely abundant in the 'Diseovery' collections, but does not differ in any matcrial particular from the species well known in the Atlantic. Its range of distribution is very great, extending from the Faroe Channel (Wolfenden) throughout the Atlantic to the southermmost parts of the Antaretic area, i.e. to the iee region.

CLAUSOCALANUS (Giesbrecht).

Clausocalanus arcuicornis.
Clausocalanus arcuicornis. Giesbrecht, Atti. Acc. Lincei Rend., Ser. 4., vol. 4, p. 334. Giesbrecht, Fauna u. Fl. Neap. XIX. (1892), p. 50.
$\begin{array}{lll}", & \text { Giesbrecht, Fauna u. Fl. Neap. XIX. (1892), } \\ ", & \text { Giesbrecht u. Schmeil, Das Tierreich, p. } 27 .\end{array}$
That this speeies should oceur so far south is rather peculiar. It was found in the colleetions made at :-

Lat. $49^{\circ} 40^{\prime} \mathrm{S}$.	Long. $172^{\circ} 18^{\prime} 30^{\prime \prime} \mathrm{W}$.
Lat. $55^{\circ} 44^{\prime} \mathrm{S}$.	Long. $95^{\circ} 43^{\prime} 30^{\prime \prime} \mathrm{W}$.
Lat. $56^{\circ} 12^{\prime} 45^{\prime \prime} \mathrm{S}$.	Long. $136^{\circ} 18^{\prime} 30^{\prime \prime} \mathrm{W}$.
Lat. $57^{\circ} 255_{2}^{\prime} \mathrm{S}$.	Long. $151^{\circ} 43^{\prime} \mathrm{E}$.
Lat. $58^{\circ} 49^{\prime} 45^{\prime \prime} \mathrm{S}$.	Long. $154^{\circ} 48^{\prime} \mathrm{W}$.
Lat. $59^{\circ} 19^{\prime} \mathrm{S}$.	Long. $120^{\circ} 24^{\prime} 30^{\prime \prime} \mathrm{E}$.
Lat. $63^{\circ} 5^{\prime} \mathrm{S}$.	Long. $175^{\circ} 43^{\prime} \mathrm{E}$.
Lat. $84^{\circ} 01^{\prime} \mathrm{S}$.	Long. $170^{\circ} 49^{\prime} \mathrm{E}$.

and does not differ essentially from the species common in the Atlantie. It has a eonsiderably greater range than was thought, since I ean reeord it from the Irish eoast to nearly the Antarctic Cirele.

GAETANUS (Giesbrecht).

Gaetanus antarcticus.

(Plate III., fig. 6.)
Guetamus antarcticus, Wolfenden, Plankton Studies, Part I. (1905), p. 7.
Size 8 mm . The body is very robust and dorsally very gibbous. The head and first thoracie segment are coaleseed, and together much longer than all the rest. The last thoraeie segment earries two short stout eurved spines, direeted backwards. The head is in its upper part quite square, and with short stout eurved spine, directed a little forwards. The abdomen is not a quarter the length of the eephalothorax.

Anterior antenne not as long as the body, of twenty-three segments, with the eighteenth, nineteenth and twenty-first segments longer than the twentieth, and all joints with very few setæ. $R i$ of the posterior antenne more than half the length of Re. Posterior foot jaws with lamellar process on the first basal.

Maxillæ; Li2 and Li3, eaeh with four bristles; B2 with five, Ri small and twojointed. Re small, and less than half the length of $B 2$.

First feet, $R e$ of three segments with three marginal spines, the segmentation being complete ; Ri of only one segment.

Second feet, Ri distinctly two-jointed.
Third and fourth feet, Ri and $R e$ of three joints each. B2 of the fourth feet with tubal bristles as in Gaidius.

The extraordinary size of this animal makes it the largest known species of Gactanus. It occurred once only in the 'Discovery' collection, and also appeared in the 'Gauss' collection, and is probably Antarctic in its habitat. Several new species of Gaetamus have been described recently, and it may serve some useful purpose to recapitulate here the different species discovered since Gieshrecht and Schmeil's last work (Tierreich, 1898).

1. Gaftands major.

G. major, Wolfenden, Proc. Zool. Soc., London, Feb. ., 190\%, in Dr. Fowler's paper.
., Farran, Ann. Rep. Fish. Ireland, 1902-02, Part II., App. II., 190\%.
Size 5 mm . and over. Anterior antenme larger than the body hy about one joint; lamellar appendage of posterior foot jaws absent; Re of first feet of three segments, and with three Se. Cephalie spine short, and as in G. armiger.

2. Gaetanus caudani.

Gatanus cauldeni, Canu, Ann. Univ. Lyon, V. 26, 1896. Wolfenden, Jour. Mar. Biol. Assoc., 1904, p. $2+$.
:, (?) pilectus, Farran, ibid.
Like G. miles, but anterior antenne only one-and-half times as long as the body; lamella of posterior foot jaw like that of G. miles. Re of first feet, three segmented basals of fourth feet with tubal bristles, 5 mm . and over. Canu's original description was of one immature ठ. Farran's were also immature specimens.

3. Gaetanus holti.

Gcetanus holti, Farran, ibid.
„ lutifrons, Sars, Bull. Mus. Monaco, No. 26, March, 1905.
., longispinus, Wolfenden, Plankton Studies, Part I. (1905), p. 7.
Cephalic spine strong and directed backwards with long interval between the frontal part and base of the horn. Anterior anteune not as long as the hody-spines of the last thomacic segment, strong, long, and directed backwards. Small lamella on posterior foot jaw. First feet with three segments and three Se. Fourth feet with basal tubal bristles. Size $4 \cdot 74 \mathrm{~mm}$.

4. (iaelanus antarcticus.

Guetanus antarcticus, Wolfenden, Plankton Studics, Part I. (19(5)), p. 7.
Thorax gibbous, very stout short curved cephalic spine directed forwards, head square, not like G.armiger. Abdomen short and thick, not a quarter of whole length.

Anterior antenne not as long as the body. Posterior foot jaw with lamella. Re of first feet with three segments and three Se. Fourth feet with tubal bristles. Size 8 mm .

5. Gaetanus minor.

Gaetamus minor, Farran, Ann. Rep. Fish. Irelant, 1902-03, P. II., App. II. (1905), p. 34.
Cephalic spine as in G.armiger, long slender spines of last thoraeic segment. Anterior antennæ reaching ouly to genital segment. First feet with Re of two segments and only two Se. Second feet with one-jointed Re. Size 2.4 mm .
6. Gaetanus robustus.

Gueftents robustus, Sars, Bull. Mus. Ocėanographique Monaco, no. 26 (1905), p. 11.
Robust, eephalothorax a little swollen in middle. Cephalic spine small, curved, or sometimes absent. Spines of last thoraeic segment very strong and divergent. Abdomen thick and about one-third of whole length. Anterior antennæ scareely as long as the body. Size 8 mm . (? possibly the same as G. antarcticus, but the deseription of G. robustus is insufficient.)

7. Gaetanus inermis.

Gaetanus inermis, Sars, op. cit., p. 12.
Body very thick, anterior division swollen. No trace of cephalic spine, last segment of thorax rounded and without spines. Abdomen very short, not a quarter of whole length. Anterior antenne not longer than body. Structure of other parts not different from other species of this genus (?) Size 6.30 mm .
(In the absence of cephalic and thoracie spines, whieh are constant in this genus, this is probably not a Gaetamus.)

8. Gaetanus curvicornis.

Gaetanus curvicornis, Sars, op. cit., p. 11.
Body like G. miles (Giesbrecht), short curved cephalic spine. Spines of last thoracie segment moderately large and divergent. Very short abdomen only a quarter the whole length. Anterior antennæ scareely longer than the body. Size 4.35 mm .

9. Gaetanus kruéppi.

Gaëttanus kruppi, Giesbrecht, Mitt. Zool. St. zu Neapel, XVI. (1903), p. 202.
Like G. armiger, but larger, viz., $3 \cdot 6-4 \mathrm{~mm}$. long, thorax shorter. Anterior antennæ reach three joints beyond furca, twenty-second segment longer than in G. armiger. Feet like G. miles. of 3.7 mm . long, thoraeic spines shorter than i and antennæ shorter than body. Se of $R e 2$ of first foot rudimentary; fourth feet without tubal bristles. Fifth feet Ri of one segment, Re of right foot of two ; of left, of three segments. Mediterranean.

NaNTHOCALANUS (Giesbrecht).

There are only two examples of this genus in the 'Discovery' collection. Since the publication of Giesbrecht and Sehmeil's "Copepoda" (in "Tierrech ") the genus has received many additional species. To the originally deseribed species, viz., X. agilis and X. minor (Giesbrecht), are now added X. burealis (Sars), X. propinquus (Sars), X. muticus (Sars), X cristatus (Wolfenden), X. suberistatus (Wolfenden), X. simplex (Wolfenden), X. magnus (Wolfenden), $X:$ calcmimus (Wolfenden), X. atlenticus (Wolfenden), X. greeni (Farran), X. pinguis (Farran), and X. whensus (Farran) ; and, as they are deseribed in scattered publications, it may be well to reeapitulate the elaracters here.

1. X. Agilis.

X. ugilis, Giesbrecht, Fauna n. Fl. Neap. XLX. (1892), p. 286.

Size 2.4; fureal segments broader than long, abdominal segments very hirsute; anterior antenuæ reaching end of furca; fifth feet three segments, beset with spines and teeth, and with three apical teeth.

In the of only one (the left) foot five-jointed. (Mediterranean.)

2. X. subagilis.

X. subugilis, Woolfenden, Jour. Mar. Biol. Assoc., VII. (1904), p. 118.

Size $2 \cdot 6$ mm., resembling X. agilis, but abdominal segments not hirsute.
Fifth feet with three segments, the basal with strong teeth, the middle with only hairs, the distal spinulose and with three long apieal spines.
o with a pair of fifth feet nearly equal, the right of four, the left of five segments. (Mull of Galloway.)

> 3. Х. BOREALIS.
X. borentis, Sars, Crustacea of Norway, Vol. IV., p. 46.

Size 3.50 mm . ; fureal segments as broad as long, anterior antenne reach end of genital segment; fiftlı feet of three segments, proximal two, with tecth on inner margin ; last with two apical and two lateral spines.

- of with a pair of fifth feet left of five segments, right very short and of only three segments. (Polar Seas, Norway.)

4. S. propinguts.
J. propinquus, Sars, loc. cit.

Size 1.75 mm . furcal rami longer than hroad ; anterior antenne slender and reaching only to second ahbominal segment, postcrior antemia with lie much longer
than $R i$; fifth feet of three segments, last mueh smaller than proximal two, only basal with marginal teeth, end segment with three short outer and one long inner spine.
ot a pair of fifth feet, the right very rudimentary and short, of three segments. (Polar Sea. Norway.)

5. X. cristatus.

X. cristatus, Wolfenden, Jour. Mar. Biol. Assoc., 190t, p. 119.

Size 5.0 mm .; head triangular and with prominent crest, anterior antennæ reaehing to end of furca; fifth feet of three segnients, all densely spinulose, with two short apical spines. ot not known. (West of Ireland.)

6. X. subcristatus.

X. subcristutus, Wolfenden, Plankton Studies, Part II. (1906), p. 31.

Size 7.0 mm .; head with crest, abdomen very hirsute, fureal segments very short, anterior antennæ reaehing end of genital segment; fifth feet three segments, the distal long and tapering, with two short apical spines; all these segments densely spinulose. of not known. (South Polar Sea.)

7. S. Magnos.

X. magnus, Wolfenden, op. cit., p. 32.

Size 8.8 mm . ; head rounded, not clearly separated from next segment; fureal segments very short, anterior antenne reaching the genital segment; abdominal segments very hirsute; fifth feet of three segments, very small; all segments very spinulose, with two apical and two lateral spines on the last segment. of not known. (South Polar Sea.)

8. X. simplex.

X. simplex, Wolfenden, op. cit., p. 30.

Size 1.45 mm . ; whole surface of thoracic segments covered with fine prickles, anterior antenne very short, posterior antennæ with $R e$ nearly twice as long as $R i$; anterior foot jaws with only vermiform processes, posterior foot jaws with long, thin $B 2$ without bristles; fifth feet very small, of common hasal and two segments, the distal one very small, with two apieal spines on the left and only one on the right foot. t unknown. (West of Ireland.)

9. X. calaminus.

X. calaminus, Wolfenden, op. cit., p. 34 .

Size 5.5 mm . ; furcal segments as broad as long, posterior antenne with rami of equal length; anterior foot jaw with powerful toothed hook on fourth lobe, and two slenderer hooks on fifth lobe; brush and vermiform processes; posterior foot jaw short and stout, the bristles of the endopodite rery peeuliar and like quills, with broad chitin expansion with serrated edge; fifth feet very small, of three segments ; distal segment with short apical and two short marginal spines. (Bay of Biscay.)

COPEPODA.

10. X. atlanticus.

X. athanticus, Wolfenden, Jour. Mar. Biol. Assoc., April, 1904.

Size 2.5 mm . ; anterior antennæ mueh shorter than thorax and very thiek basally, abdominal segments prickly and hirsute, feet rery spinulose; fifth of three segments, distal the largest, with four large artieulating spines, two apical, two lateral; all segments very spimulose; fureal rami as broad as long, and $R e$ of posterior antenne much longer than Ri. (West of Ireland.)

11. X. obtusus.
X. obtusus, Furran, Ann. Rep. Fish., Ireland, 19n2-(13, pt. ii., App. II. (1900), p. 40.

Size 24 mm . Fureal rami little longer than broad, anterior antenne reach genital segment, feet very spinulose. Fifth feet, three segmented, spinulose, and with two terminal and two lateral spines on last segment ; second joint longest, and spinulose on both margins. (Atlantic. Ireland.)

12. X. pinguis.

X. pinguis, Farran, Ann. Rep. Fish., Ireland, 1902-03, pt. ii., App. II. (1905), p. 40.

Size 4.5 mm . Head imperfectly separated from thorax; lateral processes of last segment blunt; fureal segments slightly longer than hroad; anterior antemne short, not as long as thorax ; rami of posterior antenna short and broad ; feet spinulose. Fifth feet of three segments, and two lateral and two apical end spines; surface of third and margins of first (inner) and second (outer) spinulose. (Atlantic. Ireland.)

13. X. greeni. X. moticos.

I. greeni, Farran, Ann. Rep. Fish., Ireland, 1902-0.3, pt. ii., App. II. (190i), p. 40. X. muticus, Sars, Bull. Mus. Monaco.
Size $5: 30-6 \mathrm{~mm}$. ; last two segments of thorax united, last segment with obtusely triangular margins; fureal segments short, broader than long; anterior antenne little longer than body. Fifth feet small, two-jointed (Sars), or three-jointed (Farran), without spines on imer margin ; last joint with three small apieal spines. (Atlantie. Ireland.)

14. X. TYPICUS.

Amallophora typica, Scott, Tr. Linn. Soc. (2), VI. (1894), p. 54.
Only the of known; 2.7 mm . long; anterior antenne, twenty segments; right fifth foot short and three segments, left like that of X. agilis.

Xapthocalanus antarcticus.

(Plate VII., figs. 10, 11.)
i 2.5 mm . long (cephalothorax 2.0 mm ., abdomen 0.5 mm . long). Abdomen, therefore, only one-fourth as long as the thorax. Head rounded and rather oval in front, with bifid rostrum, composed of two chitinous plates each with a long and rather thick filament. Head separate from first thoracie segment, last two segments separate, and distal segment on each side produced into lappets ending in rather pointed but rounded margins. Furcal segments half as long again as broad. In the middle, the thorax is broad, about half as broad as long. Abdominal segments with row of pectinations laterally, and over whole dorsum at the margin of the very short anal segment. Anterior antenne twenty-four segments, and short, only reaching to the end of the cephalothorax.

Posterior antennæ with $R e$ a little longer than R.
Mandibles, $R i$ and $R e$ about equal ; $B 2$ with three marginal bristles; Re elongated and narrow, with seven bristles. Maxilla, $B 2$ and $R i$ clongated and narrow, imperfectly segmented; B2 with four, Ri1 with 1, Ri2 and 3 with six bristles, Lil nearly twice as long as broad, with long, thin hook bristles. Anterior foot jaws with very convex $B 2$, the proximal margin of the basals much embayed. Strong toothed and curved hook on the last lobe; a number of brush processes, with small heads, and two vermiform processes distally.

Posterior foot jaws, having proportionately $B 1: B 2: R i=40: 30: 20$, the second basal about three and a half times as long as broad, and a brush process on the first basal.

1 st feet $R i=1$ segment. $R e=3$ segments with three long, thin marginal spines.
2nd feet $R i=2$ segments, $R e=3$ segments. Ri2 with a strong corona of spines.

3rd feet with a few delicate spines on surface of Re 2 .
4th feet $R i=2$ segments, $R e=3$ segments. Ri2 with a few spines on the outer margin. The exopodites of the 3 rd and 4 th feet not spinulose.

5th feet small. A common basal and each three segments; the first segment rather longer and broader than the second, with convex inner margin, and several (about eight or nine) strong teeth on the margin ; the second segment with two or three shorter spines on the proximal part of the convex inner margin; the third segment with two short apical, and one outer and one inmer marginal spines-four in all-each articulating with the segment, and on the inner margin a bunch of small teeth. A cluster of five spines on the distal surface of the last segment, and two very small spines on the outer margin of the middle segment distally. No spines on the surface of the two proximal joints.

Xaxthocalanus magnus.

(Plate VII., figs. 1-9.)
Xanthocalanus magnus, Wolfenden, Plankton Stndies, Part II. (1906), p. 32.
i 6.0 mm . long. Head dorsally with line of separation from the first segment, rounded and without any trace of crest; produced in front into a chitinous lamella with two pointed rami. Last thoracie segment on each side a little produced. Abdomen short, the eephalothorax being three and a half times its length. Genital segment protuberant ventrally and longer than the next two, anal segment very small, and fureal segments much longer than the anal.

Anterior antema, reaching about the end of the genital segment, of twenty-four segments, with thick basal joints, the eighth and ninth coaleseed, the last segment very small. Posterior antenne with $R i$ longer than $R e$, the first joint of the latter with strong rounded projection of the lower and inner margin. The masticatory plate of the mandibles with strong teeth, the two outer longer than the imner ones, which are short and all of the same size. Anterior foot jaws short, but strongly built, the outer margin very eonvex, the last lobe bearing a very strong thick basally and eurved siekleshaped hook, tapering distally ; all the bristles of Ri represented by sensory brush and vermiform appendages. The posterior foot jaws somewhat extended, the first basal comparatively thiek and with a brush appendage, the second basal elongated and thin, witl very short marginal bristles ; Ri also elongated, the first and seeond joints long, and its bristles comparatively short. Maxillæ very like the preceding species, but $B 2$ with five, $R i$ with ten bristles, Re elongated and narrow.

1st feet, Re with three distinet segments and three external spines; Ri only one segmenf.

2ud feet, Re of three broad segments very spinulose on the surface, and with short external marginal spines, $R i$ of two segments with prominent bunches of spines on the surface of $R i 2$.

3rd and 4 th feet, each ramus of three segments, the surfaces spinulose.
5 th feet small, of three segments more or less eovered, especially the last segment and margins, with eomparatively long, spine-like bristles; the terminal segment with two short terminal and two very short marginal spines, not articulating.

This is an adult female, and resembles the animal I have described as X'methocalemus. magnues (Plankton Studies, Feb., 1906) so closely that I think they must be regarded as the same animal. The 'Gauss' animals are, however, very much larger (up to $8 \cdot 8$ mm .), but the only essential differences which I ean detect are the much greater size of the latter, the rather more pointed dorsum of the head, and the more hirsute abdominal segments. In these collections I have found many examples which appear to differ only in size, and I am inelined to think that this 'Diseovery' example is merely a smaller one of the same species. The 5 th pair of feet are strikingly different from the northern species.

HETERORRHABDUS (Giesbrecht).

Only one specimen of this genus occurs in the 'Discovery' collection, which is only what might be expected from the fact that the collection is practically only epiplanktonic, whereas Heterorrhabdus is without doubt one of the most confirmed deepwater genera of Copepoda. The species II. austrina (Giesbrceht), which occurs in the 'Belgica' and 'Gauss' collections, is absent from those of the 'Discovery,' and the only specimen of the genus occurring in the latter is, I think, referable to II. longicomis.

Heterorrhabdus longicornis.

Heterochata longicomis, Giesbrecht. Atti. Acc. Linc. Rend., Ser. 4, v. (1889) p. 811.
" ., " Fauna u. Fl. Neap. XIX. (1892), p. 378.
", Wolfenden. Jour. Mar. Biol. Assoc., Vol. VII. (190t) p. 124.
? Heterochut, mujor, Dahl. Verh. d. Zool. Gesells., 1894, p. 79.
Heterorhabdus major, Wolfenden. Plankton Studies, Part I. (1905), p. 11.
I first described the male of H. longicornis, hitherto unknown, in 1902 . Since then I have found it frequently throughout the Atlantic, extending to the Antarctic area. Dahl's description of $I I$. major is very scanty, and the only essential point of difference between it and longicornis appears to be one of size. The specimen in the 'Discovery' collection is a of 4.5 mm . length, but there is no essential difference between it and smaller males from the Faroe Channel. I suggest therefore that Dahl's H. major is really II. longicornis, ard I now think that the species which I described in "Plankton Studies" as II. major may best be described as H. longicomis (Giesbrecht).

The diagnostic points of H. major (Dahl) are, according to this author, "anterior antennæ very long, the posterior foot-jaw with only weak median bristles; the penultimate lobe of the anterior foot-jaw a long 'tap' lobe, the mandible teeth but little differing in thickness, nearly the same distance apart; the exopodite of the third feet like those of the second and fourth, the size over 5 mm . long."

Except as to size, it will be observed that none of these points differ from those of II. longicornis, the largest examples of which are not, however, more than 3.5 mm . long in the North Atlantic.

The 'Discovery' specimen is a of of 4.5 mm . length, the antcrior antennæ several joints (about six) longer than the whole body; the geniculating antenne with six joints beyond the elbow. The right furcal segment is much longer than the left. The fifth lobe of the antcrior foot-jaw has a very thick-based stout curved hook, without teeth or bristles except for a few bristles at the proximal end; the lobe itself is very large. The two other bristles are long and thin. The sixth lobe has a long and thin hook, also uncombed. The bristles of $R i$ are extremely long. The posterior foot-jaw has a long thin second hasal, three times as long as hroad, and only two weak bristles in the middle. The mandible has a large simple conical tooth on the outside, and
these outer teeth are not in either mandible thiekened. The third fect resemble the fourth. The right fifth foot has a long upright process on $B 2$, haired marginally; the Re 2 broad and with a marginal protuberance on which are two or three short teeth and a small bunch of hairs, flattened long spine distal to it. Re 3 a long curved spoonshaped segment, with a stout-based apical spine, shorter spine on the inner aspeet; the right $R i$ with the seeond segment elongated and narrow, the third segment comparatively broad and short, the inner marginal bristle of $R i 2$ thickened.

The left foot has a haired marginal projection as $B 2$, Re 3 with a long stout apical spine, three-quarters as long as the segment, and with a short marginal spine on the imner side, Ria liroad, with thickened bristle. A speeimen of II. lonyicornis from the Faroe Channel measured 3.5 mm . long ; Esterly reeords it from Diego, C'alifornia, 3 mm . long. The Southern Ueean speeies evidently reaches a much greater length (4.5 mm.).

Faroelda (Wolfenden).

In the course of my cruising in the Faroe Channel in 1901 I captured a copepod which differed from any known species, to which I originally gave the name Pseudotidels.s multiserrata, in the paper read at the British Association, 1902. In 1903 appeared Sars' supplement, in which he described a new genus, Etidiopsis, which appeared to be the same animal ; and as I had already recognised that this copepod was distinetive from others closely allied (Pseudoetidens, Chiridius, Gaidius), I had created for it a new genus, Faroella. My paper had been in the printers' hands for some time when Professor Sars' supplement appeared with the description of Sitidiopsi.s. Consequently I do not know to which name priority should be given, nor do I fcel yet certain that the genus described briefly by Sars is identieal with the Faroella described by me in the J. M. B. Ass. of 1904. Certainly the Faroella of the Antarctic Sea has some differences, and I therefore retain the name for the genus whieh I originally gave, more especially as Professor Sars, who has examined some Irish specimens, states, as I am informed, that they are not identical with his.

Faroella astarctica.

(Plate II., figs. 1, 2, 3, 4.)
of i size 4.3 mm . (cephalothorax 3.3 mm ., ablomen 1.0 mm .). The fore-body is therefore over three times as long as the abdomen. The head and first thoraeic segment are united, the two last segments of the thorax separate, the anterior segment over twice as long as the four last segments; the most posterior of these is well defined from the one in front, small, and laterally prolonged into stout spines which are about threequarters as long as the genital segment. In dorsal aspect the head is rather triangularshaped, and on each side helow the level of the posterior antema, laterally expanded. ln the lateral aspect the head is evenly rounded, wal, and with stout two-peinted
rostrum direeted forwards, with slight curve downwards, the rostral spines not at all divergent, as in Sars' pieture of Etidiopsis. The whole cephalothorax is studded with fine and closely-set priekles. Abdomen of four segments, slender, the genital only a little larger than the next, with strong ventral protuberance, $>A b 2>A b 3>A b 4$. Furcal segments as long as the anal, and twice as long as broad. Tail bristles four on each side, with very short and delicate ventrally placed aceessory bristles. Anterior antenne reaching just beyond the end of the genital segment, the first two joints comparatively large and as long as the next five joints, the combined eighth and ninth joint as long as the two joints either proximal or distal to it, the eighteenth and nineteenth joints longer than those proximal or distal, and the twenty-fourth separate from the twenty-fifth. All joints only sparingly setiferous.

Posterior antenne with exopodite a little longer only than the endopodite.
Anterior foot-jaws with the outer margin of the basal only a little convex, the fifth lobe longer than the four proximal and nearly equally-sized lobes, the $R i$ small but distinctly segmented. Each lobe with three bristles, two each on the first, seeond, third, and one on the fourth, being stout, long, and with wide apart stiff marginal bristles. Bristles of Ri long, not feathered, but slightly serrated marginally.

Posterior foot jaws having proportionately $B 1: B 2: R i=10: 12: 5 . \quad B 2$ therefore a little longer than $B 1$, and over twiee as long as $R i ; B 1$ two and a half times as long as broad, with two small lobes with respectively two and three short bristles; $B 2$ four times as long as broad, its marginal bristles very small and distal of the middle. Ri short and distinctly five-segmented.

Maxillæ, Le 1 with nine bristles and its outer margin nearly straight; B2 with five, and not segmented from $R i$ with thirteen bristles; Le 2 a small lobe, but without bristles; Re small, longer than broad, and with ten bristles; Li 1 with nine large hooks and four bristles ; Li 2 and 3 well-formed lobes.

First feet. $R i$ one-jointed; Re three-jointed, with three long thin marginal spines.

Second feet. Ri two-jointed, Ri1 short, Ri2 very elongated, and nearly four times as long as $R i 1$. The whole $R i$ only extends to the distal end of $R e 2$. On the distal part of the surfaee of Ri2 is a bunch of fine hairs; Re 3 is as long as Re $1+2$, and its end saw is longer than the Re 3 and beset with a great number (exceeding fifty) of elosely-sct teeth, of which those in the middle are the largest.

Fourth feet. Ri and $R e$ of three segments each. Ri proportionately longer than in the other feet, and the third segment as long as $R i 1+2$, and a little over three times as long as broad, with fine hairs on the surface distally. Re 3 mueh longer than $R e 1+2$ and over three times as long as broad. Its end saw three-quarters as long as the Re 3, and with over fifty elosely-set teeth. No fifth feet.

The chief points in whieh this Antaretie speeies differs from that of the northern seas are in its greater size, the greater strength of the rostrum, the rather different body proportions, and the more equal size of the rami of the posterior antenne. The
chitin everywhere in the cephalothorax is almost covered with prickles, and the whole animal is more robust.

MICROCALANUS (SARs).

Microcalanus pusillus.

(Plate II., fig. 5.)
Microculemus musillus, G. O. Sars, Crnstac. of Norway, IV. (1903), p. 156.
Pseulocalemus pyymrus, Sars, Norwegn. N. Polar Expdn., Tol. V. Crustacea, 1901. ",,\quad Giesbrecht, 'Belgica' Report, p. 20.

Sars originally described a small Calanoid, Pseudocalamus pyqmæus, from Nansen's Polar Expedition, which he subsequently re-named Microcalamus, and ineluded in the new genus a second and still smaller form of M. pusillus. Giesbrecht described a small Calanoid from the Antaretic seas, which agreed generally with Sars' Polar species, except for very small differences, e.g. the length of the anterior antenne, and the length of the outer marginal spines of the exopodites of the feet. The size varied, mostly from $0 \cdot 7-0 \cdot 75 \mathrm{~mm}$. ; some were even smaller. P. pygmæus, Sars ($=$ M. pygmaus, Sars), is a little longer, ciz. 86 mm . (Sars).

The 'Diseovery' collection contains many examples of a very small Calanoid which agrees so closely with Sars' M. pusillus, that I regard them as identical ; and Giesbrecht's Pseudocalumus pyymeres must, I think, he also regarded as identical. This small Calanoid is one of the few examples of complete agreement in form and strueture between the Polar and Antaretic forms, and on that ground is of interest.

The female is 0.60 mm . long. Cephalothorax two and a half times longer than the abdomen ; the head and first segment muited, the former evenly rounded and with short, delicate rostrum ; the greatest breadth not quite half the length; the last thoracie segment with rounded and only slightly produced margins; abdomen of four segments. The genital segment is nearly twice as long as the next, which is rather larger than the distal segment, and the anal as long as the segment preceding it. Furcal segments as long as the anal and longer than broad, with four short terminal bristles. The genital segment is very swollen laterally, but symmetrieal, and rather tumid ventrally.

Anterior antenne reaching about the end of the genital segment, and of twentythree joints.

Posterior antemae with $R e$ about one-thind longer than the Ri.
Mandibles with Ri much longer than lie, hoth rami fully segmented. Mastieatory plate with strong cutting teeth seven or eight in number, and distally nearly half as broad as long.

Anterior foot jaws with five well-formed lobes, of Calemus type, with wellsegmented Ri.

Posterior foot jaws with segments proportionately $B 1, B 2, R i=9,8,9 . \quad R i$ elongated and thin, with five distinet segments.

First feet, $R i$ of one, Re of three segments, the first without $S e ; R i$ with four $S i$.
Second feet, Ri of two, Re of three segments ; no Si on $B 1$ or $B 2$.
Fourth feet, Ri and Re of three segments each. The end saw extremely long, and longer than the whole $R e$, broad and eoarsely serrated marginally.

In the second to the fourth fcet the Re 3 has three outer marginal spines. No fifth feet.

The few males present were apparently immature.

HALOPTILUS (Giesbrecht).

One species of this genus appears to be characteristie of the Antarctie fauna, since it is present in very many of the 'Gauss' samples, but curiously enough, occurred only onee in the 'Discovery' eollection. It is large, and distinguished at a glanee from any other examples of the genus by the prominent black ocellus dorsally plaeed, an organ not possessed by any other speeies of Haloptilus.

Haloptilus ocellatus.

(Plate III., figs. 1, 2.)
Haloptilus ocellatus, Wolfenden, Plaukton Studies, Part I. (1905), p. 14.
9 , of length, from the end of the frontal spine to the end of the furca, 8.75 mm ., with cephalothorax over five times as long as the abdomen; the conjoined head and first segment much longer than the remaining segments of the anterior body (about one-third) ; the last two segments of the eephalothorax united, and with rounded margins. On the second segment, in the eentre of the dorsum, or a little to the right of the centre, is a prominent and very blaek rounded pigmented ocellus, standing out in clear eontrast to the rest of the very transparent animal. The frontal spine is long, tapering, and usually a little curved downward, and often laterally, towards the tip. The distanec from the tip of the spinc to the base of the anterior antenne is equal to the distanec between the latter and nearly to the distal end of the second cephalic segment. Abdomen of four scgments, with the anal as long as the two preceding, and the furcal segments over twice as long as broad.

Anterior antenne a little longer than the whole animal, reaching beyond the furea by about three or four joints, and sparingly setiferous.

Postcrior antennæ with endopodite very long and exopodite very short, the latter of six joints, with doubtful division of the last, which would be the seventh joint, the basal or first segment very long, and nearly as long as the joints distal to it. lie not
more than one quarter as long as Ril. Re 1 elongated and seven or eight times as long as broad.

Anterior foot jaws with a rather stout, but unarmed hook on the fifth lobe, not longer, however, than the other bristles.

Posterior foot jaws thick, with $R i$ of similar thickness to $B 2$, and of five segments; the five stout eurved hook bristles of nearly equal length, the two terminal only a little the longest and thickest.

Mandibles with Ri very long and Re only as long as Ri 1 ; masticatory plate with outer stout, broad-based, conical and curved tooth; three pointed short teeth intermal to it, rather like 1 . mucronatus.

Maxillæ.-First inner lobe with six bristles, of which only two of the distal ones are stout hooks; second inner lole with one stout long bristle; third inner lobe with one stout elongated and two short thin bristles; B2 about as broad as long, with four elongated and thick bristles and one thin, short proximal bristle, Ri longer than broad, and about three-quarters as long as $B 2$ and only half its width, and with five bristles; Re very long, twice as long as $R i+B 2$, and nearly twiee as long as broad, with eleven bristles, of which the three innermost are short and thin.

All feet with three jointed rami, Re of fifth pair only five-sevenths as long as Re of fourth pair ; Ri of fifth pair ouly as long as Re $1+2$; Re 3 longer than Re $1+2$, twice as long as broad, with three inner hristles, two outer spines, and end spine nearly as long as the last segment. I have not yet seen the of of this speeies.

OITHONA (BAIRD).

Two species of this genus oceur in these collcetions, one of which, viz., Aithona similis, is of world-wide distribution, and oecurs with great frequency in Antaretic collections; the other, to which the name Oithona frigida has been given by Giesbrecht (and which has been fully described by him in the 'Belgiea' report, virle ante), oceurs very sparingly in the 'Discovery' collection.

ILARPACTICUS (Dana).

Harpacticus furcifer.

Harpacticus furcifer, Giesbrecht, ‘ Belgica ' Report, p. 37.
The 9 of this species was first described by Gieshrecht in the 'Belgiea' report ; and in the 'Diseovery' eollection, marked 4. i. 02, W.Q., occurred three specimens of the male, though female examples were conspicuously alsent.

The 9 , aceording to Giesbrecht, is 1.55 mm , long; the rostrum small, the series of points on the abrlominal segments not numerous, the furca as long as both last abdominal segments, narrowing distally and about three times as long as broan; the

[^2]anterior antemæ nine-jointed, the exopodite of the posterior antennæ like II. chelifer, but smaller, the sceond basal of the mandible like H. brevicomis ($=/ /$. fulvus), and the exopodite scarcely half as long as the endopodite ; both rami of the maxillæ are about equal ; the first lobe of the anterior foot jaws has three bristles, the fourth lobe is long, and its hook short, the posterior foot jaw is mueh thinner and weaker than in If. chelifer and II. brevicornis and more like II. flexus. The first feet have thin and weak terminal claws, both rami of only two segments, and the endopodite is short, the joints of both branches being broader than in flexus; ihe endopodites of the second and fourth feet are larger in proportion to the exopodites than in chelifer and brevicornis, and in the fourth pair reach to the middle of the last joint of the exopodite; the bristles on the second endopodite joint are, however, two, instead of one as in chelifer ; the last joint of the fifth feet is comparatively small, and is searcely half so broad as this; its last joint has five, the process of the basal joint, four bristles.

The striking feature of H. furcifer is the length of the fureal segments, whieh are usually very short in this genus, and though related to IT. flezus, it differs in the size, which, in the latter species, is only $\cdot 64 \mathrm{~mm}$. in length, compared with 1.5 in II. furcifer.
5

1

0

(ippepoda pl. 1.

Copepoda pl. 11.

EXPLANATION OF THE PLATES.

PLATE I.

Catumus propinquus, fig. 1. Whole animal, q. Oc. 3, obj. 2 in.
fig. 2. Whole animal, δ. Oc. 3, obj. 2 in.
", ", fig. 3 and 3 a , đ. 5th pair of fect. Oc. 3 , obj. $\frac{1}{2}$ in.
" $"$ fig. 4. 母. Basal joint of 5th foot. Oc. 3, obj. $\frac{1}{2}$ in.
", simillimus, fig. 5. Whole animal, 9 . Oc. 3, obj. 2 in.
" " fig. 6. Basal joint of 5th foot. Oc. 3, obj. 表 in.
", tonsus, fig. 7. Whole animal. q. Oc. 3, obj. 1 in.
" ", fig. 8. Basal joints of 5th foot, ㅇ. Oc. 3, obj. $\frac{1}{4} \mathrm{in}$.
", acutus, fig. 9. Whole animal, ㅇ. Oc. 3, obj. 2 in.
., " fig. 10. Basal joints of 5th foot, ㅇ. Oc. 3, oljj. $\frac{1}{2}$ in.

PLATE II.
Furoella antarctica, fig. 1. 9 , whole animal. Oc. 3, obj. 2 in.
" $" \quad$ fig. 2. \&, Posterior foot-jaw. Oc. \%, obj. 1 in.
" \quad fig. $3 . \quad$, 1 st foot. Oc. 3, obj. 1 in.
",\quad fig. $4 . \quad$, 2 nd foot. Oc. 3, obj. 1 in.
Mierocalanus pusillus, fig. 5. \quad, whole animal. Oc. 3, obj. $\frac{1}{2}$ in. Rhincalanus grendis, fig. 6. \ddagger, whole animal. Oc. 3, obj. 2 in.

PLATE III.

Hatoptilus ocellatus, fig. 1. q, whole animal. (Oc. 8, obj. 2 in. " ", fig. 2. 5th foot, \&. Oc. 8, ohj. 1 in.
Metritia minceps, fig. 3. Whole animal, ㅇ. Oc. 3, obj. 2 in. " \quad, fig. 4. 5th pair of fcet, q. Oc. 3, oljj. $\frac{1}{2}$ in. ,,\quad tig. 5.2 nd pair of fcet, q. Oc. 3, obj. 1 in. Gatanus antarclicus, fig. 6. $\%$, wholc animal. Oc. 3, obj. 2 in.

PLATE IT.

Euchata similis, fig. 1. \&, whole animal. Oc. 3, obj. 2 in.

PLATE V.

Stephus longipes, fig. 1. Whole animal, o. Oc. 3, obj. $\frac{1}{2} \mathrm{in}$.
$\begin{array}{llll}" & \text { fig. 2. Whole animal, i. Oc. 3, obj. } \frac{1}{2} \mathrm{in} . \\ " & \text { ", fig. 3. Whole animal, i. Oc. } 3, \text { obj. } \frac{1}{2} \mathrm{in} .\end{array}$
" antarcticum, fig. 4. Whole animal, 9. Oc. 3 , obj. 1 in.
$" \quad$ fig. 5. Whole animal, 9 , dorsal. Oc. 3 , obj. 1 in.
" fig. 6. 5th feet, ㅇ. Oc. 3, obj. $\frac{1}{2}$ in.
" ", figs. 7, 8. 5th fect, 才. Oc. 3, obj. $\frac{1}{2}$ in.

PLATE VI.

Paralabidocera hodgsoni, fig. 1. I, last thoracic segment and abdomen. Oc. 3, obj. $\frac{1}{2} \mathrm{in}$.

"	"	fig. 2. Whole animal, ㅇ. Oc. 3, obj, $\frac{1}{2} \mathrm{in}$.
"	,	fig. 3. 5th foot, P $^{\text {. Oc. } 3, ~ o b j . ~} \frac{1}{2} \mathrm{in}$.
"	"	fig. 4. 4th foot, $\frac{9}{}$, exopodite. Oc. 3, obj. $\frac{1}{2} \mathrm{in}$.
"	,	fig. 5. 1st foot, 9 . Oc. 3, obj. $\frac{1}{2} \mathrm{in}$.
"	"	fig. 6. 2nd foot, 9 . Oc. 3, obj. $\frac{1}{2} \mathrm{in}$.
"	"	fig. 7. Posterior antenne, $¢$. Oc. 3, obj. $\frac{1}{4} \mathrm{in}$.
"	"	fig. 8. Maxilla, ¢ $^{\text {. Oc. 3, obj. } \frac{1}{4} \mathrm{in} .}$
",	"	fig. 9. Mandible, ․ . Oc. $3, ~ o b j . ~_{\frac{1}{4} \text { in. }}$
"	"	fig. 10. Anterior foot-jaw, 9 . Oc. 3, obj. $\frac{1}{4} \mathrm{in}$.
"	"	fig. 11. Tcrminal lobes of post-footjaw, ㅇ. Oc. 3, obj. $\frac{1}{4} \mathrm{in}$.
,	,	fig. 12. Whole animal, ot Oc. $3, \mathrm{obj} . \frac{1}{2} \mathrm{in}$.
		fig. 13. 5th fcet, P . Oc. $3, \mathrm{obj} . \frac{1}{2} \mathrm{in}$.

PLATE VII.

Xanthocalanus magmus, fig. 1. Whole animal. Oc. 3, obj. 2 itr.

Antarctic (Discovery) Einp.
Copepoda pl. 111.
Haloptilus ocellatus ($\mathrm{x}, 2$)
Metridia princeps ($3-5$)
(;aetanus antarcticus (6)

Copepoda pl. IV.
Euchaeta similis ($\begin{aligned} 1-4 & \text { I) }\end{aligned}$
.. antarctica (5.0)

Antarctic (Discovery) Eip.
(inpepoda pl. V.
stephus honges ($1-3$).

Intarctic (1)iscovery) 1Exp.

Intarctic (Discovery) Eip.
Copepoda pl. V'II.
Xanthocalanus magnus ($1-9$)
antarcticus $(10,11)$.

[^0]: * Owing to the author's absence from England he was unable to see the "revise" of this Report.-En.

[^1]: * The author, in agreement with Sars, prefers the name originally given to the genus by Scott, but it is perhaps better to observe the ordinary rule.-ED.

[^2]: VOL. IV.

